PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Przepływomierz wirowy - analiza zjawiska generacji wirów. Współczesne metody badań i wizualizacji ścieżki wirowej von Karmana

Autorzy
Identyfikatory
Warianty tytułu
EN
Vortex meter - analysis of vortex shedding phenomenon. Contemporary methodology of investigations and visualization of von Karman vortex street
Języki publikacji
PL
Abstrakty
PL
Zagadnienie ścieżki wirowej von Karmana jako podstawy fizycznej działania przepływomierza wirowego jest przedmiotem niniejszej pracy. Długa historia przepływomierza wirowego nie doprowadziła dotychczas do pełnego poznania zjawiska ze wzglądu na wyjątkową złożoność procesu generacji i rozwoju wirów. Jest sprawą podstawową, że właściwe zaprojektowanie jakiegokolwiek urządzenia wymaga głębokiego zrozumienia występujących zjawisk fizycznych. W przypadku przepływomierza wirowego są one wyjątkowo skomplikowane. Stąd teza, że pełne zrozumienie tych zjawisk może się odbyć tylko na podstawie wszechstronnych badań wykorzystujących różne metody badawcze. Można do nich zaliczyć: analizę sygnału pomiarowego, badania pola prędkości z wykorzystaniem sondy termoanemometrycznej, wizualizację przepływu z cyfrowym przetwarzaniem obrazów oraz modelowanie numeryczne. Informacje dotyczące zjawiska uzyskane dzięki różnym metodom pozwolą na stworzenie spójnego obrazu generacji i rozwoju wirów. Wyniki uzyskane z ich wykorzystaniem umożliwią też potwierdzenie poprawności prowadzonych badań i formułowanych wniosków. Poglądy autora na filozofię optymalizacji przepływomierza wirowego zostały sformułowane głównie na podstawie własnych badań zaprezentowanych w rozdz. 4 i 6 (chociaż osiągnięcia innych autorów są szeroko cytowane). Nowe podejście do badań ścieżki wirowej von Karmana jest wyrażone chociażby w analizie stabilności okresu sygnału pomiarowego, analizie widmowej sygnałów z sondy termoanemometrycznej czy też w parametryzacji ścieżki wirowej z wykorzystaniem wizualizacji przepływu i cyfrowego przetwarzania sygnałów. Zaproponowany model fenomenologiczny pozwolił na weryfikację wyników uzyskanych innymi metodami i ułatwił ich interpretację. Ważne osiągnięcie autora stanowi interpretacja zjawisk występujących w bliskim sąsiedztwie przeszkody, towarzyszących wprowadzeniu szczeliny do przeszkody — generatora wirów. W Dodatku opisano liczne urządzenia wykorzystujące czujnik przepływomierza wirowego, opracowane w zespole naukowym kierowanym przez autora pracy.
EN
The von Karman vortex street as the physical basis of the vortex meter is the subject of the paper. The long history of the vortex meter has not led so far to the comprehensive understanding of its applied phenomena because of their exceptional complexity regarding the generation and growth of vortices. It is of fundamental significance that successful design of any device is determined by way of deep understanding of the applied physical basics. In case of the vortex meter, the phenomena are extremely complicated. Hence the idea that comprehensive recognition should only be made using various research methods. Analysis of the measured signal, hot-wire anemometer investigations of the flow field, flow visualization with image processing and numerical modelling can be chosen as preferred research methods. Partial information conccrning phenomena properties yielded due to various methods of application should make up a coherent picture of vortex shedding. Results obtained due to the application of different methods may also constitute the confirmation of correctness of the conducted investigations and formulated conclusions. Thc views of the author on the philosophy of meter optimization have been formulated mainly on the basis of his own investigations presented in chapters 4 and 6 (although achievements of other researchers are widely cited). A new approach to the von Karman vortex street research is expressed by investigations of signal period stability, spectral analysis of the signals front hot-wire anemometer and vortex street parametrization with application of flow visualization and image processing. Due to the proposed phenomenological model, verification and interpretation of results ohtained by other application methods were feasible. One of the most important achievements of the author is the interpretation of phenomena appearing in the closest neighbourhood downstream the bluff body accompanying the introduction of the slit into the primary device. Numerous devices with vortex meters which were designed and realized in the research group managed by the author are decribcd in Appendix A.
Rocznik
Tom
Strony
1--158
Opis fizyczny
Bibliogr. 199 poz., tab., rys., wykr.
Twórcy
autor
  • Instytut Systemów Elektronicznych, Politechnika Warszawska
Bibliografia
  • [1] Miller R.W., Flow Measurement Engineering Handbook, Third Edition, McGraw-Hill, 1996.
  • [2] Spitzer D.W., Flow measurement - Practical Guides for Measurement and Control, Instrument Society of America, 1996.
  • [3] Herschy R.W., Streamflow Measurement, Elsevier Applied Science Publishers, London 1995.
  • [4] Liptak B.G., Flow Measurement, Chilton Book Company, Pensylwania 1993.
  • [5] Furness R.A., Heritage J.E., Commercially available flowmeters and future trends, Measurement and Control, vol. 19, No 5, special issue, June 1986, pp. 25-36.
  • [6] Obraz J., Ultradźwięki w technice pomiarowej, WNT, Warszawa 1983.
  • [7] Śliwiński A., Ultradźwięki i ich zastosowania, WNT, Warszawa 2001.
  • [8] Waluś S., Ultradźwiękowe pomiary strumienia objętości wody w rurociągach i w kanałach otwartych. Politechnika Śląska, Zeszyty Naukowe nr 1075, Gliwice 1990.
  • [9] Yorke T.H., Oberg K.A., Measuring River Velocity and Discharge with Acoustic Doppler Profilers, Flow Measurement and Instrumentation, No 13, 2002, pp. 191-195.
  • [10] Bevir M.K., The Theory of Electromagnetic flowmeter, Journ. Fluid Mech., No 43, 1970.
  • [11] Bevir M.K., Long Induced Voltage Electromagnetic Flowmeters and the Effect of Velocity Profile, Quart. Journ. Mech. And Applied Math., vol. 24, No 3, 1971.
  • [12] Shercliff I.A., The Theory of Electromagnetic Flow Measurement, Cambridge University Press, 1962.
  • [13] Bonfig K.W., New Developments in Magnetic Flow Measurement in Partly Filled Open Channel, ACTA IMEKO, Berlin 1982.
  • [14] Bucholz H., Die Durch das Erdmagnetische Feld im Bewegten Wasser Eines Flusses Induzierten Elektrischen Strome, Archiv fur Elektrotechnik, No 1, 1958.
  • [15] Michalski A., Flow Measurements in Irrigation Channel, Instrumentation and Measurement Magazine, vol. 3, No l, March 2000, pp. 12-16.
  • [16] Michalski A., Dry Calibration Procedure of Electromagnetic Flow Meter for Open Channels, IEEE Transactions on Instrumentation and Measurement, vol. 49, No 2, April 2000, pp. 434-438.
  • [17] Michalski A., A New Approach to Estimating the Main Error of a Primary Transducer for an Electromagnetic Flowmeter, Transactions on Instrumentation and Measurement, vol. 50, No 3, June 2001 pp. 764-767.
  • [18] Michalski A., Wybrane problemy syntezy przetworników pierwotnych przepływomierzy elektromagnetycznych dla kanałów otwartych, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 1999.
  • [19] Polska Norma PN-ISO 9104: Metody Oceny Właściwości Przepływomierzy Elektromagnetycznych do Cieczy.
  • [20] Wang J.Z., Tian G.Y., Lucas G.P., Relation Ship Between Velocily Profile and Distribution of Induced Potential for an Electromagnetic Flow Meter, Flow Measurement and Instrumentation 18 (2007), pp. 99-105.
  • [21] Pankanin G.L.: The Vortex Flowmeter: Various Methods of Investigating Phenomena, Measurement Science and Technology, IOP, vol. 16, No 3, 2005, pp. R1-R16 (Review article).
  • [22] Bailey S.J.: Two new flowmeters have no moving parts, Control Engineering, December 1969, pp. 73-77.
  • [23] Yamasaki H., Honda S.: A unified approach to hydrodynamic oscillator type flowmeters, Proc. IMEKO Symposium on Flow Measurement and Control in Industry. 13-16 November 1979, Tokyo, pp. 115-120.
  • [24] Yamasaki H., Rubin M.: The vortex flowmeter, Flow its Measurement and Control in Science and Industry, USA, 1974, pp. 975-985.
  • [25] Miller R.W., De Carlo J.P., Cullen J.T.: A vortex flowmeter - calibration results and application experience, Proc. Flow-Con, Brighton 1977.
  • [26] Kopp J., Soroko O.: Liquid vortex shedding flowmeter. Proc. Industry Oriented Conference and Exhibit, 6-9 October 1975, Milwaukee.
  • [27] Lomas D.J.: Vortex flowmetering challenges the accepted techniques, Control & Instrumentation, July/August 1975.
  • [28] Cousins T., Zanker K.: The performance and design of vortex meters, Proc. Int Conf. On Flow Meters in the Mid 1970's, NEL, East Kilbride, 1975.
  • [29] Simoes E.W., Furlan R., Bruzetti Leminski R.E., Gongora-Rubio M.R., Pereira M.T., Morimoto N.I., Santiago Aviles J.J.: Microfluidic Oscillator for Gas Flow Control and Measurement, Flow Measurement and Instrumentation 16 (2005), pp. 7-12.
  • [30] Coulthard J., Ultrasonic Cross-Correlation Flowmeters, Ultrasonics 11 (1973), pp. 83-88.
  • [31] Beck M.S., Correlation in Instruments: Cross Correlation Flowmeters, Journal of Physics E.: Scientific Instruments, vol. 14, 1981, pp. 7-19.
  • [32] Beck M.S., Plaskowski A., Cross Correlation Flowmeters: Their Design and Application, Institute of Physics Publishing, 1987.
  • [33] Hans V., Skwarek V., Model about the Working-Principle of the Ultrasonic Cross Correlation Flowmeter, Proc. 6th Triennal Symposium on Fluid Control, Measurement and Visualization FLUCOME 2000, Canada.
  • [34] Braun H., Fug M., Schneider G., Theory and Application of an Alternative Correlation Flowmeter, Chemical Engineering & Technology, vol. 10, No l, 2004, pp. 353-360.
  • [35] Benes P., Cross Correlation Flowmeters with AE Sensors, Proc. XVI IMEKO World Congress, Vienna 2000, pp. 9-12.
  • [36] Lysak P.D., Jenkins D.M., Capone D.E., Brown W.L., Analytical Model of an Ultrasonic Cross-correlation Flow Meter, part 1: Stochastic Modeling of Turbulence, Flow Measurement and Instrumentation, vol. 19, No l, 2008 pp. 1-7.
  • [37] Lysak P.D., Jenkins D.M., Capone D.E., Brown W.L., Analytical Model of an Ultrasonic Cross-correlation Flow Meter, part 2: Application, Flow Measurement and Instrumentation, vol. 19, No l, 2008 pp. 41-46.
  • [38] Anklin M., Drahm W., Rieder A., Coriolis Mas Flowmeters: Overview of the Current State of the Art and Latest Research, Flow Measurement and Instrumentation 17 (2006), pp. 317-323.
  • [39] Ma Y., Eidenschink T., Motion Induced of Coriolis Flowmeters, Flow Measurement and Instrumentation 12 (2001) pp. 213-217.
  • [40] Walker J.T., Advances in Coriolis Technology for Precision Flow and Density Measurements of Industrial Fluids, Proc. 47th American Symposium on Instrumentation for Process Industries, 1992, Texas A&M University, 1992, pp. 69-73.
  • [41] Furness R.A., Mass Flow Measurements - a Technological Growth Area, Petroleum Review 42 (502), 1988, pp. 35-38.
  • [42] Baker R.C., Coriolis Flowmeters: Industrial Practice and Published Information, Flow Measurement and Instrumentation 5 (1994), pp. 229-46.
  • [43] Reizner J.R., Coriolis - almost Perfect Flow Meter, IEE Computing and Control Engineering, vol. 14, No 4, 2003, pp. 28-33.
  • [44] Kutin J., Bobovnik G., Hemp J., Bajsic I., Velocity Profile Effects in Coriolis Mass Flowmeters: Recent Findings and Open Questions, Flow Measurement and Instrumentation 17 (2006), pp. 349-358.
  • [45] Wang T., Hussain Y., Investigation of the Batch Measurement Errors for Single-straight Tube Coriolis Flowmeters, Flow Measurement and Instrumentation 17 (2006), pp. 383-390.
  • [46] Cousins T., Hayward A.J.T., Scott R., Design and performance of a new vortex shedding flow meter, Proc. of IMEKO Dusseldorf 1989, pp. 151-163.
  • [47] Herzl P.J., The system approach to high performance gas flow measurement with the swirlmeter, Flow its Measurement and Control in Science and Industry, USA, 1974, pp. 963-966.
  • [48] Cascetta F., Scalabrini G., Field test of a swirlmeter for gas flow measurement, Flow Measurement and Instrumentation 10 (1999), pp. 183-188.
  • [49] Strouhal V., Uber eine besondere art der tonerregung, Annalen der Physik und Chemie, Neue Folge, vol. 5, 1878, pp. 126-251.
  • [50] Rayleigh, Phil Mag., vol. 6 (1915-16), p. 433.
  • [51] von Karman T., Uber den Mechanismus des Widerstandes, den ein bewegter Korper in einer Flussigkeit erzeugt, Nachr. Ges. Wiss. Gottingen, Math. Phys. Klasse, 1911, pp. 509-517.
  • [52] Roshko A., On the development of turbulent wakes from vortex streets, NACA Report, No 1191, (1954).
  • [53] Shiba H., A speed meter of new type, Trans. Japanese Shipbuilding 97 (1960), pp. 127-134.
  • [54] Prosnak W., Mechanika płynów, PWN, Warszawa 1970.
  • [55] Jeżowiecka-Kabsch K., Szewczyk H., Mechanika płynów. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2001.
  • [56] Mitosek M., Mechanika płynów w inżynierii środowiska, PWN, Warszawa 2001.
  • [57] Ahlborn B., Seto M.L., Noack B.R., On drag, Strouhal number and vortex-street structure, Fluid Dynamics Research 30 (2002), pp. 379-399.
  • [58] Adachi T., Effects of surface roughness on the universal Strouhal number over the wiele Reynolds number range, Journal of Wind Engineering and Industrial Aerodynamics 69-71 (1997), pp. 399-412.
  • [59] Joda A., Cuesta L, Vernet A., Numerical study of forced conrection flow around rectatgular cylinders with different aspect ratios, Proc. Thermal Issues in Emerging Technologies, ThETA l, Cairo, 3-6 Januury 2007, pp. 227-233.
  • [60] Williamson C.H.K., A series in 1/Re to represent the Strouhal - Reynolds number relationship of the cylinder wake, Journal of Fluids and Structures 12 (1998), pp. 1073-1085.
  • [61] Fey U., Konig M., Eckelman H., A new Strouhal - Reynolds number relationship for the circular cylinder in the range 47
  • [62] Wang A-B., Travnicek Z., Chia K-C., On the relationship of effective Reynolds number and Strouhal number for the laminar vortex shedding of a heated circular cylinder, Physics of Fluids, vol. 12, No 6, 2000, pp. 1401-1410.
  • [63] Berger E., Willie R.: Periodic flow phenomena, Ann. Rev. Fluid Mech., vol. 4, 1972, pp. 313-340.
  • [64] Cousins T., Foster S.A., Johnson P.A., A linear and accurate flowmeter using vortex shedding, Proc. Power Fluid for Process Control Symposium, Inst. Measurement and Control, Guildford 1973, pp. 45-46.
  • [65] Keefe R.T., In investigation of the fluctuating forces acting on a stationary circular cylinder in a subsonic stream and of the associated sound field, vol. 34, No 11. 1962. pp. 1711-1714.
  • [66] Skwarek V., Windorfer H., Hans V., Measuring pulsating flow with ultrasound, Measurement 29 (2001), pp. 225-236.
  • [67] Mottram R.C., Robati B., The effects of pulsations on vortex flow meters. Proc. of Conf. on Metering of Petroleum and its Products, 7-8 March 1985, London.
  • [68] Pusayatanont M., Higham E.H., Unsworth P.J., Analysis of the sensor signal from a vortex flowmeter to recover information regarding the flow regimes, Proc. of International Conference of Flow Measurement FLOMEKO 2003, Groningen, 12-14 May 2003. CD-ROM proceedings.
  • [69] Laneville A., Martinez J., Strzelecki A., Gajan P., Vortex flowmeter exposed to swirling flows: further results, Proc. 4th International Symposium on Fluid Control, Fluid Measurement and Visualization FLUCOME'94, 29 August - l September 1994. Toulouse, pp. 113-118.
  • [70] Khalak A., Williamson G.H.K., Dynamics of a hydroelastic cylinder with very low mauss and damping, Journal of Fluids and Structures 10 (1996), pp. 455-472.
  • [71] Khalak A., Williamson G.H.K., Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping, Journal of Fluids and Structures 13 (1999), pp. 813-851.
  • [72] Militzer J., Bell T., Ham F., Simulations of vortex-induced vibrations on long cylinders with one and two degrees of freedom, Proc. of CFD 2003: The Eleventh Annual Conference of the CFD Society of Canada, Vancouver, 28-30 May, 2003.
  • [73] Facchinetti M.L., de Langre E., Biolley F., Coupling of structure and wake oscillators in vortex-induced vibrations, Journal of Fluids and Structures 19 (2004), pp. 123-140.
  • [74] Wang Z.J., Zhou Y., So R.M.C., Vortex-induced vibration characteristics of two fixed-supported elastic cylinders, Journal of Fluid Engineering, vol. 125, No 3, 2003, pp. 551-560.
  • [75] Wei Z.L., Wang J.Z., Han H.Y., Yang Z.Y., Wang W., Frequency shipft behind an oscillating bluff body in a wake flow, Proc. of International Conference of Flow Measurement FLOMEKO 1993, Seoul, pp. 515-524.
  • [76] Euler L., Principes generaux du mouvement des fluides. Histoire de l'Academie Royale des Sciences et te Belles Lettres, MDCCLV. Memoires de l'Academie Royale des Sciences et le Belles Lettres, t. XI, pp. 274-315.
  • [77] Navier M., Memoire sur les lois du mouvement fluides. Memoire de 1'Academie Royale des Sciences de l'Institut de France. Année 1823, t. VI, pp. 389-440. Paris, chez Firmin Didot, Pére et Fils, Libraires, 1827.
  • [78] Stokes G.G., On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic fluids (read April 1845). Transactions of the Cambridge Philosophical Society, vol. VIII, p. 287.
  • [79] Birkhoff G., Formation vortex street. Journal of Applied Physics 24, No l, 1953, pp. 98-103.
  • [80] Birkhoff G., Zarantonello E.H., Jets Wakes and Cavities, Academic Press Inc., New York 1957.
  • [81] Funakawa M., The Vibration of a Cylinder Caused by Wake Force in a Flow, The Japan Society of Mechanical Engineers, vol. 12, No 53, 1969, pp. 1003-1010.
  • [82] Gerrard J.H., The mechanics of the formation region of vortices behind bluff bodies, J.Fluid Mech. 25 (1966), pp. 401-413.
  • [83] Lucas G.P., Turner J.T., Influence of cylinder geometry on lite quality of its vortex shedding signal. Proc. of International Conference on Flow Measurement FLOMEKO'85, 20-23 August 1985, Melbourne, pp. 81-88.
  • [84] Bentley J.P., Mudd J.W., Vortex shedding mechanisms in single and dual bluff bodies, Flow Measurement and Instrumentation 14 (2003), pp. 23-31.
  • [85] Sun Z., Zhang H., Zhou J., Investigation of the Pressure Probe Properties as the Sensor in the Vortex Flowmeter, Sensors & Actuators A: Physical 136 (2007), pp. 646-655.
  • [86] Amadi-Echendu J.E., Zhu H., Signal Analysis Applied to Vortex Flowmeters, IEEE Trans. on Instr. and Meas., vol. 41, No 6. 1992, pp. 1001-1004.
  • [87] Fromm J.E., Harlow F.H., Numerical solution of the problem of vortex street development, Physics of Fluids, vol. 6, No 7, 1963, pp. 975-982.
  • [88] Chaplin J.R., Computer model of vortex shedding from a cylinder, Journal of the Hydraulics Division, Proc. of the American Society of Civil Engineering, 1973, pp. 155-165.
  • [89] Abernathy F.H., Kronauer R.E., The formation of vortex streets, Journal of Fluid Mechanics, vol. 13, part l, 1962, pp. 1-20.
  • [90] Gerrard J.H., Numerical computation of the magnitude and frequency of the lift on a circular cylinder, Philosophical Transactions, Royal Society of London, vol. 261, series A, 1967, pp. 137-162.
  • [91] Sarpkaya T., An analytical study of separated flow about circular cylinders, Journal of Basic Engineering, vol. 90, No 4, 1968, pp. 511-520.
  • [92] Laird A.D.K., Eddy formation behind circular cylinders, Journal of the Hydraulics Division ASCE, vol. 97, No HY6, Proc. Paper 8170, June 1971, pp. 763-775.
  • [93] Hans V., Poppen G., von Lavante E., Perpeet S., Vortex shedding flowmeters and ultrasound detection: signal processing and influence of bluff body geometry, Flow Measurement and Instrumentation 9 (1998), pp. 79-82.
  • [94] Hans V., Poppen G., von Lavante E., Perpeet S., Interaction between vortices and ultrasonic weaves in vortex shedding flowmeters, Proc. 5th Triennial International Symposium on Fluid Control, Fluid Measuurement and Visualization FLUCOME'97, 1-4 September 1997, Hayama, pp. 43-46.
  • [95] Hans V., Windorfer H., Perpeet S., Influence of vortex structures on pressure and ultrasound in vortex flowmeters. Proc. IMEKO XVI, Congress, Wien 2000, CD-ROM proceedings.
  • [96] Scholl F., Xin F., Ying C., Effect of pressure unsteadiness on vortex shedding frequency from dual bluff body, Proc. Fifth International Conference On Fluid Power Transmission And Control (ICFP2001) 3-5 April 2001, Hangzhou.
  • [97] von Lavante E., Nath B., Influence of shape deviations on the measurement precision of vortex flow meters, Proc. of International Conference of Flow Measurement FLOMEKO 2003, Groningen, 12-14 May 2003, CD-ROM proceedings. [98] von Lavante E., Nath B., Influence of Shape Deviations on the Measurement Precision of Vortex Flow Meters, Proc. of the International Symposium on Flow Measurement FLOMEKO XI, Groningen, 12-14 May 2003, CD-ROM proceedings.
  • [99] Pankanin G.L., Berliński J., Chmielewski R., Analytical modelling of Karman vortex street, Metrology & Measurement Systems vol. XII, No 4, 2005, pp. 411-425.
  • [100] Pankanin G.L., Berliński J., Chmielewski R., Numerical Modelling of Karman Vortex Street, Proc. of Fifth Triennal International Symposium on Fluid Control, Measurement and Visualization FLUCOME'97, Hayama 1997, pp. 761-765.
  • [101] Chmielewski R., Berliński J., Pankanin G.L., Modelling of Karman Vortex Street with Moving Stagnation Region, Proc. of International Conference on Flow Measurement FLOMEKO'98, Lund, June 1998, pp. 381-385.
  • [102] Pankanin G.L., Berliński J., Chmielewski R., Simulation of Karman vortex street development using new model, Metrology & Measurement Systems vol. XIII, No 1, 2006, pp. 35-47.
  • [103] Pankanin G.L., Berliński J., Chmielewski R., Simutlation of Vortex Street Development Using Model with Modifications, Metrology & Measurement Systems vol. XIII, No 4, 2006, pp. 395-404.
  • [104] Pankanin G.L., Berliński J., Chmielewski R., Numerical Modelling of Vortices Development in Tapered Duct, Proc. of the International Symposium on Flow Measurement FLOMEKO XI, Groningen, The Netherlands, 12-14 May 2003, CD-ROM proceedings.
  • [105] Miau J.J., Yang C.C., Chou J.H., Lee K.R., A T-shaped vortex shedder for a vortex flowmeter, Flow Measurement and Instrumentation vol. 4, No 4, 1993, pp. 259-267.
  • [106] Popiel, C.O., Robinson D.I., Turner J.T., Vortex shedding from specially shaped cylinders, Proc. of 11th Australasian Fluid Mechanics Conference, 14-18 December 1992, Hobart, pp. 503-506.
  • [107] Kalkhof H.G., Influence of the bluff body shape on the measurement characteristics of vortex flowmeters, Proc. of Conf. on Metering of Petroleum and its Products, 7-8 March 1985, London.
  • [108] Igarashi T., Fluid flow around a bluff body used for a Karman vortex flowmeter, Proc. of International Symposium on Fluid Control and Measurement FLUCOME TOKYO'85, 2-6 September 1985, Tokyo, pp. 1017-1022.
  • [109] Igarashi T., Flow characteristics around a circular cylinder with a slit (1st report, Flow control and flow patterns), Bulletin of the JSME, No 154, 1978, pp. 656-664.
  • [110] Igarashi T., Flow characteristics around a circular cylinder with a slit (2nd report, Effect of boundary layer suction), Bulletin of the JSME, No 154, 1978, pp. 1389-1397.
  • [111] Tsuchiya K., Ogata S., Ueta M., Karman vortex flow meter, Bulletin of JSME, vol. 13, No 58, 1970, pp. 573-582.
  • [112] Olsen J.F., Rajagopalan S., Vortex shedding behind modified circular cylinders, Journal of Wind Engineering and Industrial Aerodynamics 86 (2000), pp. 55-63.
  • [113] Pankanin G.L., Sensitvity of Vortex Meter Characteristics on Bluff Body Design, Proc. of Fourth Triennal International Symposium on Fluid Control, Measurement and Visualisation FLUCOME'94, Toulouse 1994, vol. 2, pp. 893-898.
  • [114] Popiel. C.O., Robinson D.I., Turner J.T., Vortex shedding from a circular cylinder with a slit and concave rear surface, Applied Scientific Research 51 (1993), pp. 209-215.
  • [115] Turner J.T., Popiel, C.O., Robinson D.L., Evolution of an improved vortex generator, Flow Measurement and Instrumentation 4 (1993), pp. 249-259.
  • [116] Igarashi T., Performance of new type vortex shedder for vortex flowmeter. Proc. of Sixth Triennal International Symposium on Fluid Control, Measurement and Visualisation FLUCOME 2000, 13-17 August 2008, Sherbrooke, paper 028.
  • [117] Bentley J.P., The development of a vortex flowmeter for gas flows in large duets. Proc. of International Conference on Flow Measurement FLOMEKO'85, 20-23 August 1985, Melbourne, pp. 89-94.
  • [118] Nichols A.R., Bentley J.P., Bates K.L., Coulthard J., Experimental investigation of vortex shedding from two rectangular bluff bodies in tandem. Proc. Int. Conf. Flow Measurement in the mid 1980's, Glasgow, vol. l, paper 3.2.
  • [119] Benson R.A., Bentley J.P., The optimisation of blockage ratio for optimal multiple bluff body vortex ftowmeters, Proc. of 4th International Symposium on Fluid Control, Fluid Measurement and Visualization FLUCOME'94, 29 August-l September 1994, Toulouse. pp. 887-891.
  • [120] Bentley J.P., Benson R.A., Shanks A.J., The development of dual bluff body vortex flowmeters, Flow Measurement and Instrumentation 7 (1996), pp. 85-90.
  • [121] Peng J., Fu X., Chen Y., Flow Measurement by a New Type Vortex Flowmeter of Dual Triangulate Bluff Body, Sensors & Actuators A: Physical 115 (2004), pp. 53-59.
  • [122] Hans V., Windorfer H., Comparison of pressure and ultrasound measurements in vortex flow-meters. Measurement 33 (2003), pp. 121-133.
  • [123] Takamoto M., Komiya K., A vortex ring shedding flowmeter, Proc. of IMEKO IX CONGRESS, Berlin 1982, pp. 156-165.
  • [124] Miau J.J., Hsu M.T., Axisymmetric-type vortex shedders for vortex flowmeters, Flow Measurement and Instrumentation, vol. 3, No 2, 1992, pp. 73-79.
  • [125] White D.F., Velocity measurement by insertion meter, International Instrumentation-Automation Conference & Exhibit, 28-31 October 1974, New York, TP74-714.
  • [126] White D.F., Vortex shedding flowmeters - some fundamentals and some routine applications. Proc. Industry Oriented Conference and Exhibit, 6-9 October 1975, Milwaukee.
  • [127] Hans V., Filips C., Improvring vortex flow metering using ultrasound, Proc. of International Conference of Flow Measurement FLOMEKO 2003, Groningen, 12-14 May 2003, CD-ROM proceedings.
  • [128] Music M., Phase modulation of the ultrasonic wave in von Karman street, Proc. of International Conference of Flow Measurement FLOMEKO 2003, Groningen, 12-14 May 2003, CD-ROM proceedings.
  • [129] Menz B., Vortex flowmeter with enhanced accuracy and reliability by means of sensor fusion and self-validation, Measurement 22 (1997), pp. 123-128.
  • [130] Cousins T., Vortex shedding detection using ultrasound, Proc. of Conf. on Metering of Petroleum and its Products, 7-8 March 1985, London.
  • [131] Coulthard J., Yan Y., Keech R.P., Flow metering by vortex wake transit time measurements. Proc. of International Conference of Flow Measurement FLOMEKO 1993, Seoul, pp. 581-589.
  • [132] Ohashi H., Okamoto K., Sen A., Yoshikura H., Inada Y., High-reliability vortex flow meter with dual-coupled ultrasonic sensors, Proc. of International Conference of Flow Measurement FLOMEKO 2000, Salvador, 6-10 May 2000, CD-ROM proceedings.
  • [133] Kim W., Sung J., Yoo J.Y., Lee M.H., High-definition PIV analysis on vortex shedding in the cylinder wake, Journal of Visualization, vol. 7, No l, 2004.
  • [134] Dai G.Q., Lam K.M., Oblique vortex street from a circular cylinder oscillaling in water, Proc. of International Symposium on Flow Visualization, Edinburgh 26-29 August 2000, paper 239, CD-ROM proceedings.
  • [135] Williams T.C., Hargrave G.K., Haliwell N.A., A study of flow around bluff bodies using time-resolved PIV at 20 kHz, Proc. of International Symposium on Flow Visualizalion. Edinburgh 26-29 August 2000, paper 239, CD-ROM proceedings.
  • [136] Zhang M.M., Cheng L., Zhou Y., Comparison between open-loop and closed-loop control of resonans fluid-structure interaction in a cross flow, Proc. of the 7th Triennal International Symposium on Fluid Control, Measurement and Visualization FLUCOME 2003, Sorrento, Italy, 25-28 August 2003, CD-ROM proceedings.
  • [137] Sun Z., Zhang H., Zhou J., Evaluation of Uncertainly in a Vortex Flowmeter Measurement, Measurement, vol. 41, No 4, 2008, pp. 349-356.
  • [138] Miau J.J., Yeh C.F., Hu C.C., Chou J.H., On measurement uncertainty of a vortex flowmeter, Flow Measurement & Instrumentation 16 (2005), pp. 397-404.
  • [139] Marsili R., Development and characterization of an airflow vortex-shedding flowmeter with PVDF piezoelectric fim sensors. Proc. of International Conference on Flow Measurement FLOMEKO'96, 20-24 October 1996, Beijing.
  • [140] Zheng D., Zhang T., Hu Y., Experimental Investigations of the Location of a Piezoelectric Probe in a Vortex Flow Sensor, Meas. & Science Technology, 18 (2007), pp. 3777-3783.
  • [141] Pankanin G.L., Influence of Vortex Meter Configuration on Measure Signal Parameters, Proc. of IEEE Instrumentation & Measurement Technology Conference, Irvine, 1993. pp. 337-34.
  • [142] Takahashi S., Itoh L, Intelligent vortex flowmeter, Proc. of International Conference of Flow Measurement FLOMEKO 1993, Seoul, pp. 107-113.
  • [143] Pankanin G.L., Optimization of Vortex Meter Geometry with Application of Flow Visualisation, Proc. of Australasian Instrumentation and Measurement Conference AIM 89, Adelaida 1989.
  • [144] Pankanin G.L., Pytlak T., Effect of Meter Configuration on Quality of Vortex Signal. Proc. of IMEKO XI Congress, Houston 1988.
  • [145] Windorfer H., Hans V., Design aspects of ultrasonic measurement configuration in vortex flow-meters, Proc. IMEKO XVI Congress, Wien 2000, CD-ROM proceedings.
  • [146] Windorfer H., Hans V., Correlation of ultrasound and pressure in vortex shedding flow-meters, Proc. ot International Conference of Flow Measurement FLOMEKO 2000, Salvador, 6-10 May 2000, CD-ROM proceedings.
  • [147] Zheng D., Zhang T., Hu Y., Experimental Investigations of the Location of a Piezoelectric Probe in a Vortex Flow Sensor, Measurement Science and Technology 18 (2007), pp. 3777-3783.
  • [148] Zheng D., Zhang T., Jiang., Experimental Analysis on a Location of Pressure Probes of Vortex Flow Sensor in a Wind Tunnel, Journal of Tianjin University Science and Technology, vol. 41, No 8, August 3008, pp. 895-903.
  • [149] Pospolita J., Zamorowski R., Optymalizacja miejsca pomiaru pulsacji ciśnienia generowanych w przepływomierzach wirowych, Przegląd Elektrotechniczny, No 5, 2008, pp. 178-180.
  • [150] Ghaoud T., Clarke D.W., Modelling and tracking a vortex flow-meter signal, Flow Measurement and Instrumentation, vol. 13, 2002, pp. 103-117.
  • [151] Xu K-J., Huang Y-Z., LV X-H., Power-Spectrum-Analysis-Based Signal Processing System of Vortex Flowmeters, IEEE Trans, on Instrum. and Meas., vol. 55, No 3, June 2006.
  • [152] Hans V., Poppen G., Measuring Vortex Frequencies using Undersampled Ultrasound Signals, Proc. of International Conference of Flow Measurement FLOMEKO'96, Bejing 1996, pp. 724-728.
  • [153] Clarke D.W., Designing phase-locked loops for instrumentation applications, Measurement 32 (2002), pp. 205-227.
  • [154] Clarke D.W., Ghaoud T., A dual phase-locked loop for vortex flow metering, Flow Measurement and Instrumentation 14 (2003), pp. 1-11.
  • [155] Huang N.E., Shen Z., Long S.R., et al., The Empirical Mode Decomposition and The Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis, Proc. of the Royal Society of London 1998, No 454, pp. 903-995.
  • [156] Sun Z-Q., Zhou J-M., Zhou P., Application of Hilbert-Huang Transform to Denoising in Vortex Flowmeter, J. Cent. South Univ. Technol., vol. 13, No 5, 2006, pp. 501-505.
  • [157] Zheng D., Zhang T., Xing J., Mei J., Improvement of the HHT method and application in weak vortex signal detection, Meas. and Science Technology, 18 (2007), pp. 2769-2776.
  • [158] Ding H., Huang Z., Song Z., Yan Y., Hilbert-Huang Transform based signal analysis for the characterization of gas-liquid two-phase flow, Flow Measurement & Instrumentation 18 (2007), pp. 37-46.
  • [159] Sun H-J., Zhang T., Wang H-X., Wavelet Denoising Method used in the Vortex Flowmeter. Proc. Second International Conference on Machine Learning and Cybernetics, Xi'an, 2-5 November 2003.
  • [160] Zhang T., Sun H-J., Peng W., Wavelet Denoising Applied to Vortex Flowmeters, Flow Measurement & Instrumentation, vol. 15, 2004, pp. 325-329.
  • [161] Mallat S., A theory for multiresolution signed decomposition: the wavelet representation, IEEE Pattern Anal. and Machine Intell., vol. 11, No 7, 1989, pp. 674-693.
  • [162] Yamasaki H., Progress in Hydrodynamic Oscillator Type Flowmeters, Flow Measurement & Instrumentation, vol. 4, No 4, 1993, pp. 241-247.
  • [163] Zhang H., Huang Y., Sun Z., A Study of Mass Flow Rate Measurement Based on the Vortex Shedding Principle, Flow Measurement & Instrumentation, vol. 17, 2006, pp. 29-38.
  • [164] Lynnworth L.C., Cohen R., Rose J.L., Kim J.O., Furlong E.R., Vortex Shedder Fluid Flow Sensor, IEEE Sensors Journal, vol. 6, No 6, 2006.
  • [165] Mian J.J., Wu C.W., Hu C.C., Chou J.H., A study on signal quality of a vortex flowmeter downstream of two elbows out-of-plane, Flow Measurement and Instrumentation 13 (2002), pp. 75-85.
  • [166] Pankanin G., Metoda doboru parametrów przetwornika pierwszego stopnia w elektronicznym przepływomierzu wirowym, rozprawa doktorska, Warszawa 1983.
  • [167] Pankanin G.L., A New Approach to the Bluff Body Design in Vortex Flowmeters, Proc. of International Symposium on Fluid Control and Measurement FLUCOME TOKYO'85, Tokyo 1985, pp. 1029-1034.
  • [168] Pankanin G.L., The Influence of the Bluff Body Shape on the Vortex Signal Quality, Proc. of International Conference on Flow Measurement in the Mid-80s, Glasgow 1986, vol. l, paper 3.3.
  • [169] Pankanin G.L., Pytlak T., New Development in Vortex Meter Design, Proc. of International Symposium on Fluid Control Measurement, Mechanics and Flow Visualisation FLUCOME'88, Sheffield 1988, pp. 479-483.
  • [170] Pankanin G.L., Krystkowicz G., Influence of Sensor Design on Vortex Meter Properties, Proc. of 2nd Brazilian Symposium on Flow Measurement, Sao Paolo 1995, CD-ROM proceedings.
  • [171] Pankanin G.L., Investigation of Vortex Signal Stability as Function of Vortex Meter Configuration, Proc. of International Symposium on Fluid Control. Measurement, Mechanics and Flow Visualisation FLUCOME'91, San Francisco 1991, pp. 455-458.
  • [172] Pankanin G.L., Goujon-Durand S., Comparison of Characteristics of Vortex Meter with Various Bluff Bodies, Proc. of International Metrology Congress, Lille 1993.
  • [173] Elsner J.W., Drobniak S., Maszyny przepływowe, t. 18, Metrologia turbulencji przepływów, PAN IMP, Ossolineum, 1995.
  • [174] Terao Y., Choi H.M., Takamoto M., Matsui G., Measurement of Karman vortex street shed in a circular pipe using triple hot-wire probe, Proc. of International Conference of Flow Measurement FLOMEKO'98, Lund 1998, pp. 197-201.
  • [175] Terao Y., Choi H.M., Edra R.B., Takamoto M., An experimental study on flow structure in vortex flowmeters. Proc. of International Conference of Flow Measurement FLOMEKO 1993, Seoul, pp. 507-514.
  • [176] DISA Probe Catalog, DISA Elektronik A/S Skovlunde, 1982.
  • [177] Jorgensen F.E., Directional sensitivity of wire and fiberfilm probes. DISA Information publication, No 11, DISA Elektronik, Skovlunde 1971.
  • [178] Berliński J., Chmielewski R., Pankunin G., Termoanemometryczne badania pola przepływu w przepływomierzu wirowym, mat. V Konferencji Naukowej Czujniki Optoelektroniczne i Elektroniczne COE'98, Gdańsk 1998, t. II, s. 571-574.
  • [179] Chmielewski R., Pankanin G.L., Berliński J., Optymalizacja czujnika przepływomierza wirowego z wykorzystaniem badań termoanemometrycznych pola prędkości, mat. IV Szkoły-Konferencji Metrologia Wspomagana Komputerowo, Rynia 7-10.06.1999, t. 2, s. 227-234.
  • [180] Berliński J., Chmielewski R., Pankanin G.L., Vortex Flow Field Investigations with Application of Hot-Wire Anemometer, Proc. of International Conference of Flow Measurement FLOMEKO 2000, Salvador, 6-10 May 2000, CD-ROM proceedings.
  • [181] Chmielewski R., Pankanin G., Berliński J., Zastosowanie termoanemometrii do badań pola prędkości w przepływomierzu wirowym. Pomiary, Automatyka. Kontrola, Nr 10/2000, s. 9-13.
  • [182] Berliński J., Chmielewski R., Pankanin G., Wykorzystanie analizy widmowej sygnałów z czujników termoanemometrycznych do oceny zjawisk występujących w przepływomierzu wirowym, mat. II Krajowego Kongresu Metrologii KKM2001, Warszawa, 24-27.06.2001, s. 343-346.
  • [183] Pankanin G.L, Berliński J., Chmielewski R., Spectral Analysis Application in Hot-Wire Anemometer Investigations of Phenomena Appearing in Vortex Flow Meter, Proc. of XVIII IMEKO Congress, Rio de Janeiro, 17-22 September 2006, CD-ROM proceedings.
  • [184] Merzkirch W., Flow visualization, AP. New York 1974.
  • [185] Cheng K.C., Nakayama Y., Flow visualization review of development and recent progress, Proc. of International Symposium on Fluid Control and Measurement FLUCOME TOKYO'85, 2-6 September 1985, Tokyo, Special lecture.
  • [186] Honda S., Yamasaki H., Vortex shedding in a three-dimensional flow through a circular pipe, Proc. IMEKO X Congress, Prague 1985, pp. 139-149.
  • [187] Pankanin G.L., Investigations of Flow Area in Vortex Meter with Application of Flow Visualisation, Proc. of International Metrology Congress, Paris 1989, pp. 365-370.
  • [188] Pankanin G.L., Petliński D., Flow Visualization as Research Tool in Vortex Meter Design, Proc. of International Conference on Industrial Flow Measurement Onshore and Offshore, London, June 1987.
  • [189] Pankanin G.L., Berliński J., Chmielewski R., Karman Vortex Street Visualisation. Proc. of International Symposium on Flow Visualization, 26-29 August 2000, Edinburgh, paper 239, CD-ROM proceedings.
  • [190] Pankanin G., Kulińczak A., Berliński J., Karman vortex street parametrization with image processing application, Proceedings of SPIE Optoeleetronic and Electronic Sensors V, 2003, vol. 5124, pp. 186-192.
  • [191] Berliński J., Chmielewski R., Pankanin G.L., Wizualizacja ścieżki wirowej Karmana, mat. VI Konferencji Naukowej Czujniki Optoelektroniczne i Elektroniczne COE2000, Gliwice, 13-16.06.2000, t. II, s. 305-310.
  • [192] Pankanin G., Kulińczak A., Berliński J., Image Processing in Karman Vortex Street Identification, Proc. Seventh Triennal International Symposium on Fluid Control. Measurement and Visualization FLUCOME 2003, Sorrento, CD-ROM proccedings.
  • [193] Gonzalez R.C. and Woods R.E., Digital Image Processing, Prentice Hall, 2002.
  • [194] Tadeusiewicz R., Korohoda P., Komputerowa analiza i przetwarzanie obrazów, Wyd. Fundacji Postępu Telekomunikacji, Kraków 1997.
  • [195] Pankanin G., Kulińczak A., Berliński J., Parametryzacja ścieżki wirowej Karmana z wykorzystaniem technik przetwarzania obrazów, mat. VII Konferencji Naukowej Czujniki Optoelektroniczne i Elektroniczne COE2002, Rzeszów, 5-8.06.2002, t. II. s. 271-276.
  • [196] Pankanin G.. Kulińczak A., Berliński J., Investigations of Karman Vortex Street Using Flow Visualization and Image Processing, Sensors and Actuators A: Physical, 138 (2007), pp. 366-375.
  • [197] Pankanin G.L., Experimental and Theoretical Investigations Concerning the Influence of Stagnation Region on Karman Vortex Shedding, Proc. IMTC 2007, IEEE Instrumentation and Measurement Technology Conference, Warsaw, 1-3 May 2007, CD-ROM proccedings.
  • [198] Pankanin G.L., Pytlak T., Berliński J., Rejak W., Kalkulator agrolotniczy KA-1, mat. XI Seminarium Agrolotniczego, Mierki k/Olsztyna 1991, s. 247-255.
  • [199] Berliński J., Chmielewski R., Pankanin G.L., Application of Vortex Flowmeter in Heat Metering, Proc. of International Symposium on Heat Metering - District Heating, Trondheim, June 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0029-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.