PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza numeryczna propagacji światła w urządzeniach optycznych i optoelektronicznych realizowanych metodami technologii planarnej

Autorzy
Identyfikatory
Warianty tytułu
EN
Numerical analysis of light propagation in optical and optoelectronic devices realised using planar technology
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono teoretyczne podstawy metody dekompozycji kierunkowej oraz omówiono jej zastosowanie do analizy i projektownia urządzeń optycznych i optoelektronicznych realizowanych metodami technologii światłowodowej planarnej. W szczególności zaś przedmiotem rozważań są podukłady planarnych struktur światłowodowych stosowane w układach optyki zintegrowanej, takie jak światłowód przewężany, światłowód zakrzywiony, rozgałęzienie światłowodowe oraz odcinek światłowodu. Ponadto rozważa się zastosowanie metody dekompozycji kierunkowej w analizie i projektowaniu krawędziowych diod laserowych dużej mocy. Do szczegółowych zagadnień poruszanych w tej pracy zalicza się między innymi analizę dokładności przybliżenia uproszczonego wektorowego, skalarnego oraz zastosowanie metody efektywnego współczynnika załamania w analizie właściwości propagacyjnych światłowodów planarnych, analizę wpływu rzędu przybliżenia Pade'go operatora pierwiastkowego na dokładność obliczeń uzyskanych metodą dekompozycji kierunkowej, a także zastosowanie nieortogonalnych układów współrzędnych w metodzie dekompozycji kierunkowej. Ponadto przedyskutowano zagadnienie stabilności algorytmów, które wykorzystują metodę dekompozycji kierunkowej do obliczania rozkładu gęstości fotonów wewnątrz wnęki rezonansowej krawędziowej diody laserowej dużej mocy. Obliczenia metodą dekompozycji kierunkowej przeprowadzono przy zastosowaniu metody różnic skończonych. Prezentowane wyniki mają charakter użytkowy i mogą być wykorzystane do prowadzenia prac doświadczalnych oraz projektowania urządzeń i podzespołów realizowanych metodami technologii światłowodowej planarnej.
EN
This study provides the theoretical fundamentals of the directional decomposition method and presents the details of the application of this method to the analysis and design of the optical and optoelectronic devices realised using the processing techniques of the planar technology. Particularly, the application of the directional decomposition method to the analysis and design of basic elements of integrated optical circuits, such as bent and tapered waveguides, waveguide sections and Y-junctions is studied. Furthermore, the application of the directional decomposition method to the analysis and design of the edge emitting high power laser diodes is investigated. The particular problems considered include the analysis of the accuracy of the polarised, scalar and effective index approximations, investigation of the accuracy of the Pade approximation to the square root operator and the application of the non-orthogonal coordinate systems in the directional decomposition method. Moreover the stability of the algorithms using the directional decomposition method for the calculation of the photon distribution within an edge emitting high power laser diode cavity was studied. All calculations were performed using finite difference method. The presented results are of practical value and can be used in experimental investigations and in designing the optical and optoelectronic devices fabricated using the planar technology.
Rocznik
Tom
Strony
1--146
Opis fizyczny
Bibliogr. 248 poz., tab., rys., wykr.
Twórcy
autor
  • The School of Electrical and Electronic Engineering The University of Nottingham
Bibliografia
  • [1] A. Majewski, Teoria i projektowanie światłowodów. 1991, Warszawa: WNT.
  • [2] K.J. Ebelling, Integrated optoelectronics : waveguide optics, photonics, semiconductors. 1993, Berlin: Springer Verlag.
  • [3] M. Bugajski B. Mroziewicz, W. Nakwaski, Lasery Półprzewodnikowe. 1985, Warszawa: PWN.
  • [4] L.B. Soldano and E.C.M. Pennings, Optical multi-mode devices based on self imaging: principles and applications. Journal of Lightwave Technology, 1995. 13(4): p. 615-627.
  • [5] K. Mertens, B. Scholl and H.J. Schmitt, Strong polarisation conversion in periodically loaded strip waveguides. IEEE Photonics Technology Letters, 1998. 10(8): p. 1133-1135.
  • [6] R. Maerz, Integrated Optics: Design and Modelling. 1995, London: Artech House.
  • [7] T. Tamir (Editor), Integrated Optics. 1975, Berlin: Springer Verlag.
  • [8] R.G. Hunsperger, Integrated Optics. 2002, Berlin: Springer Verlag.
  • [9] J. Petykiewicz, Podstawy fizyczne optyki scalonej. 1989, Warszawa: PWN.
  • [10] M.A. Duguay, Y. Kokubun, T.L. Koch and L. Pfeiffer, Antiresonant reflecting optical waveguides in SiO2-Si multilayer structure. Applied Physics Letters, 1986. 49(7): p. 13-15.
  • [11] V. Priye, B.P. Pal and K. Thagarajan, Analysis and design of novel leaky YIG film guided wave optical isolator. Journal of Lightwave Technology, 1998. 16(2): p. 246-250.
  • [12] L. Morl, C.M. Weinert, F. Reier, L. Stoll and H.P. Nolting, Uncladded InGaAsP/InP rib waveguides with integrated thickness tapers for efficient fibre-chip butt coupling. Electronics Letters, 1996. 32: p. 36-38.
  • [13] G. Fishbeck, R. Moosburger, C. Kostrzewa, K. Petermann, Digital optical switch based on 'oversized' polymer rib waveguide. Electronics Letters, 1996. 32(6): p. 544-545.
  • [14] H. Hatami-Hanza, M.J. Lederer, P.L. Chu and I.M. Skinner, A novel wide-angle low-loss dielectric stab waveguide Y-branch. Journal of Lightwave Technology, 1994. 12(2): p. 208-213.
  • [15] J.J.G.M. van der Tol, J.W. Pedersen, E.G. Metaal, Y.S. Oei, F.H. Groen and P. Demeester, Sharp vertices in asymettric Y-junctions by double masking. Journal of Lightwave Technology, 1994. 6(2): p. 249-251.
  • [16] C. Kostrzewa R. Moosburger, G. Fishbeck, K. Petermann, Shaping the digital optical switch using evolution strategies and BPM. IEEE Photonics Technology Letters, 1997. 9(11): p. 1484-1486.
  • [17] A. Majewski and S. Sujecki, Modes in rectangular fibres. Optoelectronics Review, 1996. 4: p. 45-50.
  • [18] E.A.J. Marcatili, Dielectric rectangular waveguide an directional coupler for integrated optics. Bell System Technical Journal, 1969. 48: p. 2071-2102.
  • [19] J.E. Goell, A circular harmonic computer analysis of rectangular dielectric waveguides. Bell System Technical Journal, 1969. 48: p. 2133-2160.
  • [20] A. Majewski and S. Sujecki, Analiza właściwości propagacyjnych światłowodów prostokątnych. Prace Naukowe Politechniki Warszawskiej, 1996. 110: p. 5-35.
  • [21] J.E. Goell, Rib waveguide for integrated optical circuits. Applied Optics. 1973. 12(12): p. 2797-2798.
  • [22] R.A. Soref, J. Schmidtchen and K. Petermann, Large single mode rib waveguides in GeSi-Si and Si-on-SiO2. IEEE Journal of Quantum Electronics, 1991. 27(8): p. 1971-1974.
  • [23] E.A.J. Marcatili, Slab coupled waveguides. Bell System Technical Journal, 1974. 53(4): p. 645-674.
  • [24] N. Dagli and C.G. Fonstad, Universal design curves for rib waveguides. Journal of Lightwave Technology, 1988. 6(6): p. 1136-1145.
  • [25] S.P. Pogossian, L. Vescan and A. Vonsovici, The single mode condition for semiconductor rib waveguides with large cross section. Journal of Lightwave Technology, 1998. 16(10): p. 1851-1853.
  • [26] O. Powell, Single mode condition for silicon rib waveguides. Journal of Lightwave Teehnology, 2002. 20(10): p. 1851-1855.
  • [27] J. Lousteau, D. Furniss, A.B. Seddon, T.M. Benson, A. Vukovic and P. Sewell, The single mode condition for silicon on insutator optical rib waveguides with large cross section. Journal of Lightwave Technology, 2004. 22(8): p. 1923-1929.
  • [28] A. Majewski and S. Sujecki, Rib lightguides and couplers. Bull. Polish Academy of Sciences: Technical Sciences, 1997. 45: p. 145-150.
  • [29] A. Majewski and S. Sujecki, Polarisation charcteristics of optical rib waveguides. Optica Applicata, 1998. 28: p. 76-82.
  • [30] K.S. Chiang and W.P. Wong, Rib waveguides with degenerate polarised modes. Electronics Letters, 1996. 32(12): p. 1098-1099.
  • [31] K. Petermann, Properties of optical rib-guides with large cross-section. Archiv fuer Elektrische Uebertragung, 1976. 30(3): p. 139-140.
  • [32] I. Gerces, J. Subias and R. Alonso, Analysis of the modal solutions of rib antiresonant reflecting optical waveguides. Journal of Lightwave Technology, 1999. 17(9): p. 1566-1574.
  • [33] C. Zmudzinski, D. Botez, L.J. Mawst, A. Bhattacharya, M. Nesnidal and R.F. Nabiev, Three-core ARROW type diode laser: novel high power, novel high power, single mode device, and effective master oscillator for flared antiguided MOPAs. IEEE Journal of Selected Topics in Quantum Electronics, 1995. 2: p. 129-137.
  • [34] D.N. MacFayden, C.R. Stanley and C.D.W. Wilkinson, Waisted-rib optical waveguides in GaAs. Electronics Letters, 1980. 16(11): p. 440.
  • [35] K. Petermann, Laser diode modulation and noise. 1991, London: Kluwer Academic Publishers.
  • [36] B.C. Qiu, X.F. Liu, M.L. Ke, H.K. Lee, A.C. Bryce, J.S. Aitchison, J.H. Marsh and C.B. Button, Monolitic fabricatian of 2x2 crosspoint switches in InGaAs-InAlGaAs multiple quantum wells, IEEE Photonics Technology Letters, 2001. 13(12): p. 1292-1294.
  • [37] A. Polman, N. Hamelin, P.G. Kik, S. Coffa, M. Saggio and F. Frisina, European Patent 98830592.6, USPatent 09/415,022.
  • [38] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature, 2004. 427: p. 615-618.
  • [39] H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccia, An all-silicon Raman laser. Nature, 2005. 433: p. 292-294.
  • [40] L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeier, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien and D.E. Bossi, A review of lithium niobate modulators for fiber optic Communications systems. IEEE Journal of Selected Topics in Quantum Electronics, 2000. 6(1): p. 69-81.
  • [41] I. Baumann R. Brinkman, M. Dinand, W. Sohler, H. Suche, Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers. 1994. 30: p. 2357-2360.
  • [42] S. Suzuki, M. Yanagisawa, Y. Hibinio and K. Oda, High density integrated planar lightwave circuits using SiO2-GeO2 waveguides with high refractive index difference. Journal of Lightwave Technology, 1994. 12(5): p. 790-796.
  • [43] W. Wang, D. Chen, H.R. Fetterman, Y. Shi, W.H. Steier and L.R. Dalton, 40-GHz polymer electrooptic phase modulators. IEEE Photonics Technology Letters, 1995. 7(6): p. 638-640.
  • [44] L.H. Sloo, A. Polman. S.I. Klink, G.A. Hebbink, L. Grave, F.C.J.M. van Veggel, D.N. Reinhoudt and J.W. Hofstraat, Optical properties of lissamine functionalized Nd3+ complexes in polymer waveguides and solution. Optical Materials, 2000. 14: p. 101-107.
  • [45] K. Petermann, J. Schmidtchen, B. Schuppert and A. Splett, Integrated Optical Waveguides in Silicon. Archiv fuer Elektrische Uebeitragung (AEU), 1991. 45: p. 273-278.
  • [46] G. Fishbeck, R. Moosburger, C. Kostrzewa, A. Achen and K. Petermann, Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 µm range. Electronics Letters, 1997. 33: p. 518-519.
  • [47] Y.C. Yan, A.Y. Faber, H. de Waal, P.G. Kik and A. Polman, Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm. Applied Physics Letters, 1997. 71: p. 2922-2924.
  • [48] M.V. de Hoop, Generalisation of the Bremmer coupling series. Journal of Mathematical Physics, 1996. 37(7): p. 3246-3282.
  • [49] A.S. Sudbo, Numerically stable formulation of the transverse resonance method for vector mode-field calculations in dielectric waveguides. IEEE Photonics Technology Letters, 1993. 5(3): p. 342-344.
  • [50] C.H. Henry and B.H. Verbeek, Solution of the scalar wave equation for arbitrarily shaped dielectric waveguides by two-dimensional Fourier analysis. Journal of Lightwave Technology, 1989. 7(2): p. 308-313.
  • [51] S.J. Hewlett and F. Ladouceur, Fourier decomposition method applied to mapped infinite domains: scalar analysis of dielectric waveguides down to modal cutoff. Journal of Lightwave Technology, 1995. 13(3): p. 375-383.
  • [52] S.T. Peng and A.A. Oliner, Guidance and leakage properties of a class of open dielectric waveguides: Part I - mathematical formulation. IEEE Transactions on Microwave Theory and Techniques, 1981. 29(9): p. 843-855.
  • [53] A.S. Sudbo, Film mode matching: a vesatile numerical method for vector mode field calcualtions in dielectric waveguides. Pure and Applied Optics, 1993. 2: p. 211-233.
  • [54] T. Rozzi, G. Cerri, M.N. Husain and L. Zappelli, Variational analysis of the dielectric rib waveguide using the concept of transition function and including edge singularities. IEEE Transactions on Microwave Theory and Techniques, 247. 39(2): p. 247-257.
  • [55] N. Dagli and C.G. Fonstad. Analysis of rib dielectric waveguides. IEEE Journal of Quantum Electronics, 1985. 21(4): p. 315-321.
  • [56] M. Koshiba and M. Suzuki, Vectorial wave analysis of dielectric waveguides for optical integrated circuits using equivalent network approach. Journal of Lightwave Technology, 1986, 4(6): p. 656-664.
  • [57] F.P. Payne, A new theory of rectangular optical waveguides. Optical and Quantum Electronics, 1982. 14: p. 525-537.
  • [58] G.M. Berry, S.V. Burke, C.J. Smartt, T.M. Benson and P.C. Kendall, Analysis of multilayered dielectric waveguides: variational treatment. Electronics Letters, 1994. 30(24): p. 2029-2030.
  • [59] M. Reed, T.M. Benson, P. Sewell, P.C. Kendall, G.M. Berry and S.V. Dewar, Free space radiation mode analysis of rectangular dielectric waveguides. Optical and Quantum Electronics, 1996. 28: p. 1175-1179.
  • [60] P.W.A. McIlroy, M.S. Stern and P.C. Kendall, Spectral index method for polarised modes in semiconductor rib waveguides. Journal of Lightwave Technology, 1990. 8: p. 113-117.
  • [61] C.J. Smartt, T.M. Benson and P.C. Kendall, Exact transcendental equation for scalar modes of rectangular dielectric waveguides. Optical and Quantum Electronics, 1994. 26: p. 641-644.
  • [62] P.C. Kendal, M.S. Stern and P.N. Robson, Analysis of discrete spectral index method for rib waveguides. Optical and Quantum Electronics, 1990. 22: p. 555-560.
  • [63] C. Vassallo and Y.H. Wang, A new semirigorous analysis of rib waveguides. Journal of Lightwave Technology, 1990. 9: p. 56-65.
  • [64] K.S. Chiang, Analysis of rectangular dielectric waveguides: effective index method with built-in perturbation correction. Electronics Letters, 1992. 28(4): p. 388-389.
  • [65] A.L. Cullen, O. Ozkan and L.A. Jackson, Point-matching technique for rectangular-cross-section dielectric rod. Electronics Letters, 1971. 7(17): p. 497-499.
  • [66] S.V. Boriskina, T.M. Benson, P. Sewell and A.I. Nosich, Highly efficient full-vectorial integral equation solution for the bound, leaky, and complex modes of dielectric waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 1225. 8(6): p. 1225-1232.
  • [67] W. Schlosser, Der rechteckige dielektrische Draht (in German). Archiv fuer Elektrische Uebertragung, 1964. 18(7): p. 403-410.
  • [68] R. Lee, J.W. Neherbass, Optimal finite-difference sub-gridding techniques applied to Helmhltz equation. IEEE Transactions on Microwave Theory and Techniques, 2000. 48(6): p. 976-984.
  • [69] T. Rasmussen K. Wijnands, H.J.W.M. Hoekstra, J.H. Povlsen, R.M. de Ridder, Efficient semivectorial mode solvers. IEEE Journal of Quantum Electronics, 1997. 33(3): p. 367-374.
  • [70] T.M. Benson M.A. Matin, M.S. Stern, P.C. Kendall, New technique for finite difference analysis of optical waveguide problems. International Journal of Numerical Modelling, 1994. 7: p. 25-33.
  • [71] C.J. Smartt, T.M. Benson and P.C. Kendall, Free space radiation mode method for the analysis of propagation in optical waveguide devices. IEE Proceedings J, 1993. 140(1): p. 56-61.
  • [72] C. Vassallo, Improvement of finite difference methods for step-index optical waveguides. IEE Proceedings J, 1992. 139(2): p. 137-142.
  • [73] G.R. Hadley, Low truncation error finite difference equations for photonics simulation I: beam propagation. Journal of Lightwave Technology, 1998. 16(1): p. 134-141.
  • [74] G.R. Hadley, Low truncation error finite difference equations for photonics simulation II: vertical cavity surface emitting lasers. Journal of Lightwave Technology, 1998. 16(1): p. 142-151.
  • [75] G.R. Hadley, High accuracy finite difference equations for dielectric waveguide analysis I: uniform regions and dielectric interfaces. Journal of Lightwave Technology, 2002. 20(7): p. 1210-1218.
  • [76] G.R. Hadley, High accuracy finite difference equations for dielectric waveguide analysis II: dielectric corners. Journal of Lightwave Technology, 2002. 20(7): p. 1219-1231.
  • [77] W.W. Lui, C.L. Xu, W.P. Huang, K. Yokoyama and S. Seki, Full vectorial mode analysis with amsiderations of field singularities at corners of optical waveguides. Journal of Lightwave Technology, 1999. 17(8): p. 1509-1513.
  • [78] C.L. Xu, W.P. Huang, M.S. Stern and S.K. Chaudhuri, Full-vectorial mode calculations by finite difference method. IEE Proceeding J, 1994. 141(5): p. 281-286.
  • [79] M.S. Stern, Semivectorial polarised finite difference method for optical dielectric waveguides with arbitrary index profiles. IEE Proceeding J, 1988. 135(1): p. 56-63.
  • [80] M.S. Stern, Semivectorial polarised H field solutions for dielectric waveguides with arbitrary index profiles. IEE Proceeding J, 1988. 135(5): p. 333-338.
  • [81] T. Kerkhoven, A. T. Gallick, U. Ravaioli, Iterative solution of the eignevalue problem for dielectric waveguide. IEEE Transactions on Microwave Theory and Techniques, 1992. 40(4): p. 699-705.
  • [82] P. Stuwe, P. Luesse, J. Schuele, H.G. Unger, Analysis of vectorial mode fields in optical waveguides by a new finite difference method. Journal of Lightwave Technology, 1994. 12(3): p. 487-494.
  • [83] O. Parriaux, J.D. Decoctine, F. Gardiol, Birefrigence properties of twin-core fibres by finite differences. Journal of Optical Communications, 1982. 3(1): p. 8-12.
  • [84] W.B. Bridges, E. Schweig, Computer analysis of dielectric waveguides: a finite-difference method. IEEE Transactions on Microwave Theory and Techniques, 1984. 32(5): p. 531-541.
  • [85] K.J. Webb, S.S. Patrick, A Variational vector finite difference analysis for dielectric waveguides. IEEE Transactions on Microwave Theory and Techniques, 1992. 40(4): p. 692-698.
  • [86] J. Xia and J. Yu, New Finite-Difference Scheme for Simulations of Step-Index Waveguides with Tilt Interfaces. IEEE Photonics Technology Letters, 2003. 15: p. 1237-1239.
  • [87] T.M. Benson, R.J. Bozeat and P.C. Kendall, Complex finite difference method applied to the analysis of semiconductor lasers. IEE Proceedings J, 1994. 141(2): p. 97-101.
  • [88] P. Luesse, P. Stuwe, J. Schuele and H.G. Unger, Analysis of vectorial mode fields in optical waveguides by a new finite difference method. Journal of Lightwave Technology, 1994. 12(3): p. 487-494.
  • [89] U. Schultz and R. Pregla, A new technique for the analysis of the dispersion characteristics of planar waveguides. Archiv fuer Elektrische Uebertragung, 1980. 34(4): p. 169-173.
  • [90] H. Diestel, A method for calculating the guided modes of strip-loaded optical waveguides with arbitrary index profile. IEEE Journal of Quantum Electronics, 1984. 20(11): p. 1288-1293.
  • [91] H.J.W.M. Hoekstra, An economic method for the solution of the scalar wave equation for arbitrary shaped optical waveguides. Journal of Lightwave Technology, 1990. 8(5): p. 789-793.
  • [92] J.B. Davies, B.M.A. Rahman, Vector-H finite element solutions of GaAs/CaAlAs rib waveguides. IEE Proceeding J, 1985. 132(6): p. 349-353.
  • [93] J.B. Davies, B.M.A. Rahman, Penalty function improvement of waveguide solution by finite elements. IEEE Transactions on Microwave Theory and Techniques, 1984. 32(8): p. 922-928.
  • [94] J.F. Eee, D.K. Sun and Z.J. Cendes, Full wave analysis of dielectric waveguides using tangential vector finite elements, IEEE Transactions on Microwave Theory and Techniques, 1991. 39(8): p. 1262-1271.
  • [95] M. Koshiba and K. Inoue, Simple and efficient finite element analysis of microwave and optical waveguides. IEEE Transactions on Microwave Theory and Techniques, 1992. 40(2): p. 371-377.
  • [96] K. Hayata, M. Koshiba, M. Eguchi and M. Suzuki, Vectorial finite element method without any spurious solutions for dielectric waveguideing problems using transverse magnetic field components. IEEE Transactions on Microwave Theory and Techniques, 1986. 34(11): p. 1120-1123.
  • [97] M. Koshiba, K. Hayata and M. Suzuki, Improved finite element formulation in terms of the magnetic field vector for dielectric waveguides. IEEE Transactions on Microwave Theory and Techniques, 1985. 33(3): p. 227-233.
  • [98] M. Silveira and A. Gophinat, Analysis of dielectric guides by transverse magnetic finite element penalty method. IEEE Journal of Lightwave Technology, 1995. 13(3): p. 442-446.
  • [99] F.A. Fernandez, J.B. Davies, S. Zhu and Y. Lu, Sparse matrix eigenvalue solver for finite element solution of dielectric waveguides. Electronics Letters, 1991. 27(20): p. 1824-1826.
  • [100] D.U. Li and H.C. Chung, An efficient full vectorial finite element modal analysis of dielectric waveguides incorporating inhomogenom elements accross dielectric discontinuities. IEEE Journal of Quantum Electronics, 2000. 36( 11): p. 1251 -1261.
  • [101] C. Themistos, B.M.A. Rahman and K.T.Y. Grattan, Finite element analysis for lossy optical waveguides using perturbation techniques. IEEE Photonics Technology Letters, 1994. 6(4): p. 537-539.
  • [102] M. Koshiba, K. Hayata and M. Suzuki, Approximate scalar finite element analysis of anisotropic optical waveguides with off-diagonal elements in permittivity tensor. IEEE Transactions on Microwave Theory and Techniques, 1984. 32(6): p. 587-593.
  • [103] Y. Lu, F.A. Fernandez, Microwave and optical waveguide analysis by finite element method. 1996, New York: John Wiley & Sons Inc.
  • [104] C. Vassallo, Optical waveguide concepts. 1991, Amsterdam: Elsevier.
  • [105] T.G. Moore, J.G. Blashak, A. Taflove and G.A. Kriegsmann, Theory and application of radiation boundary operators. IEEE Transactions on Antennas and Propagation, 1988. 36(12): p. 1797-1812.
  • [106] J.A. Fleck, J.R. Morris and M.D. Feit, Time-dependent propagation of high energy laser beams through the atmosphere. Applied Physics, 1976. 10: p. 129-160.
  • [107] M.D. Feit and J.A. Fleck, Light propagation in graded-index optical fibres. Applied Optics, 1978. 17(24): p. 3990-3998.
  • [108] D. Yevick and B. Hermansson, Efficient beam propagation techniques. IEEE Journal of Quantum Electronics, 1990. 26(1): p. 109-112.
  • [109] D. Yevick, C. Rolland and B. Hermansson, Fresnel equation studies of longitudinally varying semiconductor rib waveguides: reference wavevector dependence. Electronics Letters, 1989. 25(18): p. 1254-1256.
  • [110] M.D. Feit and J.A. Fleck, Simple spectral method for solving propagatioon problems in cyllindrical geometry with fast Fourier transforms. Optics Letters, 1989. 14(13): p. 662-664.
  • [111] L. Poladian and F. Ladouceur, Unification of TE and TM beam propagation algorithms. IEEE Photonics Technology Letters, 1998. 10(1): p. 105-107.
  • [112] M. Marciniak, Modelowanie falowodów optycznych metodą propagacji wiązki. 1995: Wydawnictwa Komunikacji i Łączności.
  • [113] B. Hermansson, D. Yevick, W. Bardyszewski and M. Glasner, The unitarity of split operator finite difference and finite element methods: applications to longitudinally varying semiconductor rib waveguides. Journal of Lightwave Technology, 1990. 8(12): p. 1866-1873.
  • [114] P.L. Liu, S.L. Yang and D.M. Yuan, The semivectorial beam propagation method. IEEE Journal of Quantum Electronics, 1993. 29(4): p. 1205-1211.
  • [115] I. Mansour, A.D. Capobianco and C. Rosa, Noniterative vectorial beam propagation method with a smothing digital filter. Journal of Lightwave Technology, 1996. 14(5): p. 908-913.
  • [116] J. Yamauchi, G. Takahashi and H. Nakano, Full vectorial beam propagation method based on the McKee-Mitchell scheme with improved finite difference formulas. Journal of Lightwave Technology, 1998. 16(12): p. 2458-2464.
  • [117] Y.L. Hsueh, M.C. Yang and H.C. Chang, Tree dimensional noniterative full vectorial beam propagation method based on the alternating direction implicit method. Journal of Lightwave Technology, 1999. 17(11): p. 2389-2397.
  • [118] Em.E. Kriezis and A.G. Papagiannakis, A joint finite-difference and FFT full vectorial beam propagation scheme. Journal of Lightwave Technology, 1995. 13(4): p. 692-700.
  • [119] J. Willems, J. Haes and R. Baets. Eigenmode propagation analysis of radiation losses in waveguides with discontinuities and grating assisted couplers. in Integrated Photonics Research. 1993. Washington DC: OSA.
  • [120] C.J. Smartt, T.M. Benson and P.C. Kendall. Exact operator method for the analysis of dielectric waveguides with application to integrated optics devices and laser facets. in IEE Second International Conference on Computation in Electromagnetics. 1995.
  • [121] J. Gerdes, S. Helfert and R. Pregla, Three-dimensional vectorial eigenmode algorithm for nonparaxial propagation in reflecting optical waveguide structures. Electronics Letters, 1995. 31(1): p. 65-66.
  • [122] M. Bertolotti, P. Masciulli and C. Sibilia, MoL numerical analysis of nonlinear planar waveguide. Journal of Lightwave Technology, 1994. 12(5): p. 784-789.
  • [123] F.J. Mustieles, E. Ballesteros and K. Hernandez-Gil, Multimodal analysis method for the design of passive TE/TM converters in integrated waveguides. IEEE Photonics Technology Letters, 1993. 5(7): p. 809-811.
  • [124] P.C. Lee, D. Schultz and E. Voges, Tree-dimensional finite difference beam propagation algorithms for photonic devices. Journal of Lightwave Technology, 1992. 10(12): p. 1832-1838.
  • [125] E. Ahlers and R. Pregla, 3-D modelling of concatenations of straight and curved waveguides by MoL-BPM. Optical and Quantum Electronics, 1997. 29: p. 151-156.
  • [126] K. Kawano, T. Kitoh, M. Kohtoku, T. Ito and Y. Hasumi, Bidirectional finite-element method-of-line beam propagation method (FE-MOL-BPM) analysing optical waveguides with discontinuities. IEEE Photonics Technology Letters, 1998. 10(2): p. 244-245.
  • [127] J. Gerdes, Bidirectional eigenmode propagation analysis of optical waveguides based on method of lines. Electronics Letters, 1994. 30(7): p. 550-551.
  • [128] P.R. Ratowsky, J.A. Fleck and M.D. Feit, Helmholtz beam propagation in rib waveguides and couplers by iterative Lanczos reduction. Journal of Optical Society of America A, 1992. 9: p. 265-273.
  • [129] R. Baets, P. Bienstman. Advanced boundary conditions for eigenmode expansion models. Optical and Quantum Electronics, 2002. 34: p. 523-540.
  • [130] W.C. Chew, J.M. Jin and E. Michielssen, Complex coordinate streching as a Genralised absorbing boundary condition. Microwave and Optical Technology Letters, 1997. 15(6): p. 363-369.
  • [131] S. Helfert and R. Pregla. Modelling of taper structures in cyllindrical coordinates. in Integrated Photonics Research. 1995. Dana Point, California USA: OSA.
  • [132] E. Ahlers and R. Pregla. New vector BPM in cylindrical coordinates based on method of lines. in Integrated Photonics Research. 1995. Dana Point, California, USA: OSA.
  • [133] R. Pregla and E. Ahlers, Method of lines for analysis of arbitrarily curved waveguide bends. Electronics Letters, 1994. 30(18): p. 1478-1479.
  • [134] J.S. Gu, P.A. Besse and H. Melchior, Method of lines for the analysis of propagation characteristics of curved optical rib waveguides. IEEE Journal of Quantum Electronics, 1991. 27(3): p. 531-537.
  • [135] P. Bienstman, Two-stage mode finder for waveguides with 2D cross-section. Optical and Quantum Electronics, 2004. 36: p. 5-14.
  • [136] J. Yamauchi, M. Sekiguchi, O. Uchiyama, J. Shibayama and H. Nakano, Modified finite difference formula for the analysis of semivectorial modes in step index optical waveguides. IEEE Photonics Technology Letters, 1997. 9(7): p. 961-963.
  • [137] Y.P. Chiou, Y.C. Chiang and H.C. Chang, Improved three point formulas considering the interface conditions in the finite difference analysis of step index optical devices. Journal of Lightwave Technology, 2000. 18(2): p. 243-251.
  • [138] R. Stoffer and H.J.W.M. Hoekstra, Efficient interface conditions based on a 5-point finite difference operator. Optical and Quantum Electronics, 1998. 30: p. 375-383.
  • [139] Y.C. Chiang, Y.P. Chiou and H.C. Chang, Improved full vector finite difference mode solver for optical waveguides with step index profiles. Journal of Lightwave Technology, 2002. 20(8): p. 1609-1618.
  • [140] Y.P. Chiou and H.C. Chang, Efficient beam propagation method based on Pade approximants in the propagation direction. Optics Letters, 1997. 22(13): p. 949-951.
  • [141] Y. Chung and N. Dagli, An assessment of finite difference beam propagation method. IEEE Journal of Quantum Electronics, 1990. 26(8): p. 1335-1339.
  • [142] A. Splett, M. Majd and K. Petermann, A novel beam propagation method for large refractive index steps and large propagation distances. IEEE Photonics Technology Letters, 1991. 3(5): p. 466-468.
  • [143] G.R. Hadley, Wide angle beam propagation using Pade approximant operators. Optics Letters, 1992. 17(20): p. 1426-1428.
  • [144] G.R. Hadley, Multistep method for wide angle beam propagation. Optics Letters, 1992. 17(24): p. 1743-1745.
  • [145] T. Anada, T. Hokazono, T. Hiraoka, J.P. Hsu, T.M. Benson and P. Sewell, Very-wide-angle beam propagation methods for integrated optical circuits. IEICE Transactions on Electronics, 1999. E82-C(7): p. 1154-1158.
  • [146] M.J.N. van Stralen, H. Blok and M.V. de Hoop, Design of sparse matrix representations for the propagator used in the BPM and directional wave field decomposition. Optical and Quantum Electronics, 1997. 29: p. 179-197.
  • [147] D. Schultz, C. Glingener and E. Voges, Novel genaralised finite difference beam propagation method. IEEE Journal of Quantum Electronics, 1994. 30(4): p. 1132-1140.
  • [148] W.P. Huang and C.L. Xu, Simulation of three dimensional optical waveguides by full vector beam propagation method. IEEE Journal of Quantum Electronics, 1993. 29(10): p. 2693-2649.
  • [149] P. von Allmen R. Clauberg, Vectorial beam propagation method for integrated optics. Electronics Letters, 1991. 27(8): p. 654-655.
  • [150] W.P. Huang, C.L. Xu and S.K. Chaudhuri, A vector beam propagation method based on H fields. IEEE Photonics Technology Letters, 1991. 3(12): p. 1117-1120.
  • [151] J. Yamauchi, J. Shibayama, M. Sekiguchi and H. Nakano, Improved multistep method for wide angle beam propagation. IEEE Photonics Technology Letters, 1996. 8(10): p. 1361-1363.
  • [152] J. Shibayama, K. Matsubara, M. Sekiguchi, J. Yamauchi and H. Nakano, Efficient nonuniform schemes for paraxial and wide-angle finite difference beam propagation method. Journal of Lightwave Technology, 1999. 17(4): p. 677-683.
  • [153] Y. He and F.G. Shi, Improved full vectorial beam propagation method with high accuracy for arbitrary optical waveguides. IEEE Photonics Technology Letters, 2003. 15(10): p. 1381-1383.
  • [154] Y. Chung and N. Dagli, Analysis of z-variant semiconductor rib waveguides by explicit finite difference beam propagation method with nouniform mesh configuration. IEEE Journal of Quantum Electronics, 1991. 27(10): p. 2296-2305.
  • [155] Y. Chung and N. Dagli, Explicit finite difference beam propagation method: application to semiconductor rib waveguide Y-junction analysis. Electronics Letters, 1990. 26(11): p. 711-713.
  • [156] F. Xiang and G.L. Yip, An explicit and stable finite difference 2-D vector beam propagation method. IEEE Photonics Technology Lctters, 1994. 6(10): p. 1248-1250.
  • [157] H.M. Masoudi, Spurious modes in the DuFort-Frankel finite-difference beam propagation method. IEEE Photonics Technology Letters, 1997. 9(10): p. 1382-1384.
  • [158] P. Sewell, T.M. Benson and A. Vukovic, A stable DuFort-Frankel beam propagation method for lossy structures and those with perfectly matched layers. Journal of Lightwave Technology, 2005. 23(1): p. 374-381.
  • [159] P. Sewell, T.M. Benson, P.C. Kendall and T. Anada, Tapered beam propagation. Electronics Letters, 1996. 32(11): p. 1025-1026.
  • [160] P. Sewell, T.M. Benson, T. Anada and P.C. Kendall, Bi-oblique propagation analysis of symmetric and asymmetric Y-junctions. Journal of Lightwave Technology, 1997. 15(4): p. 688-696.
  • [161] J. Yamauchi, J. Shibayama and H. Nakano, Finite difference beam propagation method using the oblique coordinate system. Electronics and Communications in Japan, Part 2, 1995. 78(6): p. 20-27.
  • [162] S. Sujecki, P. Sewell, T.M. Benson and P.C. Kendall, Novel beam propagation algorithms for tapered optical structures. Journal of Lightwave Technology, 1999. 17(11): p. 2379-2388.
  • [163] T.M. Benson, P. Sewell, S. Sujecki and P.C. Kendall, Structure related beam propagation, Optical and Quantum Electronics, 1999. 31: p. 689-703.
  • [164] C.T. Lee, M.L. Wu and J.M. Hsu, Novel beam propagation algorithms for tapered optical structures. Journal of Lightwave Technology, 1999. 17(11): p. 2379-2388.
  • [165] M. Rivera, A finite difference BPM analysis of dielectric waveguides. Journal of Lightwave Technology, 1995. 13(2): p. 233-238.
  • [166] H. Deng, G.H. Jin, J. Harari, J.P. Vilcot and D. Decoster, Investigations of 3-D semivectorial finite difference beam propagation method for bent waveguides. Journal of Lightwave Technology, 1998. 16(5): p. 915-922.
  • [167] J. Yamauchi, M. Ikegaya, T. Ando and H. Nakano, Finite difference beam propagation method for circularly symmetric fields. IEICE Transactions on Electronics, 1992. E75-C(9): p. 1093-1095.
  • [168] T. Rasmussen, J.H. Povlsen and A. Bjarklev, Accurate finite difference beam propagation method for complex integrated optical structures. IEEE Photonics Technology Letters, 1993. 5(3): p. 339-342.
  • [169] D. Yevick, W. Bardyszewski and M. Glasner, Stability issues in vector electric field propagation. IEEE Photonics Technology Letters, 1995. 7(6): p. 658-660.
  • [170] E. Montanari, S. Selleri, E. Vincetti and M. Zoboli, Finite element full vectorial propagation analysis for three dimensional z varying optical waveguides. Journal of Lightwave Technology, 1998. 16(4): p. 703-714.
  • [171] D. Schultz, C. Glingener, M. Bludszuweit and E. Voges, Mixed finite element beam propagation method. Journal of Lightwave Technology, 1998. 16(7): p. 1336-1342.
  • [172] S.S.A. Obaya, B.M.A. Rahman and H.A. El-Mikati, New full vectorial numerically efficient propagation algorithm based on the finite element method. Journal of Lightwave Technology, 2000. 18(3): p. 409-415.
  • [173] Y. Tsuji, M. Koshiba and N. Takimoto, Finite element beam propagation method for anisotropic optical waveguides. Journal of Lightwave Technology, 1999. 17(4): p. 723-728.
  • [174] J.P. da Silva, H.E. Hernandez-Figueora and A.M. Ferreira Frasson, Improved vectorial finite element BPM analysis for transverse anisotropic media. Journal of Lightwave Technology, 2003. 21(2): p. 567-576.
  • [175] K. Saitoh and M. Koshiba, Approximate scalar finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides. Journal of Eightwave Technology, 2001. 19(5): p. 786-792.
  • [176] O. Mitomi, N. Yoshimoto, K. Magari, T. Ito, Y. Kawaguchi, Y. Suzaki, Y. Tomori and K. Kasaya, Analysing the polarisation dependence in optical spot-size converster by using a semivectorial finite-element beam propagation method. Journal of Lightwave Technology, 1999. 17(7): p. 1255-1262.
  • [177] F. Schmidt, An adaptive approach to the numerical solution of Fresnel's wave equation. Journal of Lightwave Technology, 1993. 11(9): p. 1425-1434.
  • [178] P. Kaczmarski and P.E. Lagasse, Bidirectional beam propagation method. Electronics Letters,1988. 24(11): p. 675-676.
  • [179] Q.H. Liu and W.C. Chew, Analysis of discontinuities in planar dielectric waveguides: an eigenmode propagation method. IEEE Transactions on Microwave Theory and Techniques, 1991. 39(3): p. 422-429.
  • [180] G. Sztefka and H.P. Nolting, Bidirectional eigenmode propagation for large refractive index steps. IEEE Photonics Technology Letters, 1993. 5(5): p. 554-557.
  • [181] A.D. Bresler, G.H. Joshi and N. Marcuvitz, Orthogonality properties for modes in passive and active uniform wave guides. Journal of Applied Physics, 1958. 29(5): p. 794-798.
  • [182] M. Reed, P. Sewell, T.M. Benson and P.C. Kendall, Limitations of one dimentional models of waveguide facets. Microwave and Optical Technology Letters, 1997. 15(4): p. 196-198.
  • [183] A. Vukovic, P. Sewell, T.M. Benson and P.C. Kendall, Advances in facet design for buried lasers and amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 2000. 6(1): p. 175-184.
  • [184] A. Vukovic, P. Sewell, T.M. Benson and R.J. Bozeat, Novel hybrid method for efficient 3-D fiber to chip coupling analysis. IEEE Journal of Selected Topics in Quantum Electronics, 2002. 8(6): p. 1285-1292.
  • [185] C. Yu and D. Yevick, Appication of bidirectional parabolic equation method to optical facets.Journal of Optical Society of America A, 1997. 14(7): p. 1448-1450.
  • [186] S.H. Wei and Y.Y. Lu, Application of BiCGSTAB to waveguide discontinuity problems. IEEE Photonics Technology Letters, 2002. 14(5): p. 645-647.
  • [187] Y.P. Chiou and H.C. Chang, Analysis of optical waveguide discontinuities using the Pade approximants. IEEE Photonics Technology Letters. 1997. 9(7): p. 964-966.
  • [188] S.F. Helfert and R. Pregla, Determining reflections for beam propagation algorithms. Optical and Quantum Electronics, 2001. 33: p. 343-358.
  • [189] L.A. Coldren and S.W. Corzine, Diode Lasers and Photonic Integrated Circuits. Microwave and Optical Engineering, ed. K. Chang. 1995, New York: Wiley.
  • [190] H. Rao, R. Scarmozzino and R.M. Osgood, A bidirectional beam propagation method for multiple dielectric interfaces. Photonics Technology Letters, 1999. 11 (7): p. 830-832.
  • [191] S. Sujecki, T.M. Benson, P. Sewell and P.C. Kendall, Novel vectorial analysis of optical waveguides. Joumal of Lightwave Technology, 1998. 16(7): p. 1329-1335.
  • [192] S. Sujecki, P. Sewell, T.M. Benson and P.C. Kendall, Tapered rib waveguides: fast and accurate finite difference beam propagation method. Optica Applicata, 2000. 30(1): p. 177-82.
  • [193] S. Sujecki, Optimised tapered beam propagation. Optoelectronics Review, 2000, 8(3): p. 269-274.
  • [194] S. Sujecki, New beam propagation algorithm for optical tapers. International Journal of Electronics and Communications (AEU), 2001. 55(3): p. 185-190.
  • [195] S. Sujecki, Beam propagation in non-linear tapered coordinate system. Scientific Proceeding of Riga Technical University, 2000. 42: p. 5-11.
  • [196] P. Sewell, T.M. Benson, S. Sujecki and P.C. Kendall, The dispersion characteristics of oblique coordinate beam propagation algorithms. Journal of Lightwave Technology, 1999. 17: p. 514-518.
  • [197] C. Vassallo and J.M. van-der-Keur, Highly efficient transparent boundary conditions for finite difference beam propagation method at order four. Journal of Lightwave Technology, 1997. 15(10): p. 1958-1965.
  • [198] G.R. Hadley, Transparent boundary condition for the beam propagation method. IEEE Journal of Quantum Electronics, 1992. 28(1); p. 363-370.
  • [199] R. Accornero, M. Artiglia, G. Coppa, P. Di Vita, G. Lapenta, M. Potenza and P. Ravetto, Finite difference methods for the analysis of integrated optical waveguides. Electronics Letters, 1990. 26(23): p. 1959-1960.
  • [200] G.H. Song, Transparent boundary conditions for beam-propagation analysis from the Green's function method. Journal of Optical Society of America A, 1993. 10(5): p. 896-904.
  • [201] C. Vassallo and F. Collino, Highly efjicient absorbing boundary condition for beam propagation method. Journal of Lightwave Technology, 1996. 14(6): p. 1570-1577.
  • [202] D. Yevick, J. Yu and Y. Yayon, Optimal absorbing boundary conditions. Journal of Optical Society of America A, 1995. 12(1): p. 107-110.
  • [203] J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 1994. 114(2): p. 185-200.
  • [204] W.P. Huang, C.L. Xu, W. Lui and K. Yokoyama, The perfectly matched layer (PML) boundary condition for the beam propagation method. IEEE Photonics Technology Letters, 1996. 8(5): p. 649-651.
  • [205] S. Sujecki, L. Borruel, J.Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T.M. Benson, G. Erbert, I. Esquivias and E.C. Larkins, Nonlinear properties of tapered laser cavities. IEEE Journal of Selected Topics in Quantum Electronics, 2003. 9(3): p. 823-834.
  • [206] S. Helfert and R. Pregla, Finite difference expressions for arbitrarily positioned dielectric steps in waveguide structures. Journal of Lightwave Technology, 1996. 14(10): p. 2414-2421.
  • [207] C.T. Lee, M.L. Wu and J.M. Hsu, Beam propagation analysis for tapered waveguides: taking account of the curved phase-front effect in paraxial approximation. Journal of Lightwave Technology, 1997. 15(11): p. 2183-2189.
  • [208] P. Sewell, T. Anada, T.M. Benson and P.C. Kendall, Non standard beam propagation. Microwave and Optical Technology Letters, 1996. 13: p. 24-26.
  • [209] S. Sujecki, Generalised rectangular finite difference beam propagation method. Applied Optics, 2008. 47: p. 4280-4286.
  • [210] S. Sujecki, P. Sewell and T.M. Benson. Wide angle oblique beam propagation. in International Conference on Transparent Optical Networks. 2003. Warsaw.
  • [211] L. Borruel. S. Sujecki, I. Esquivias, J. Wykes, P. Sewell, T.M. Benson, E.C. Larkins, J. Arias and B. Romero. A Selfconsistent Electrical, Thermal and Optical Model of High Brightness Tapered Lasers. in SPIE Photonics West. 2002. San Jose.
  • [212] S. Sujecki, J.Wykes, P. Sewell, A. Vukovic, T.M. Benson, E.C. Larkins, L. Borruel and I. Esquivias, Optical properties of tapered later cavities. IEE Proceeding J, 2003. 150(3): p. 246-252.
  • [213] S. Sujecki and E.C. Larkins. Bent waveguides cavitias. in SPIE International Congress on Optics and Optoelectronics. 2005. Warsaw.
  • [214] S. Sujecki, Wide angle finite difference beam propagation in oblique coordinate system. Journal of Optical Society of America A, 2008. 25(2).
  • [215] F. Xiang M. Cada, L.B. Felsen, Intrinsic modes in tapered optical waveguides. IEEE Journal of Quantum Electronics, 1999. 24(5): p. 758-765.
  • [216] J. Haes and et.al., A comparison between different propagative schemes for simulation of tapered step index slab waveguides. Journal of Lightwave Technology, 1996. 14(6): p. 1557-1567.
  • [217] H.P. Nolting and R. Maerz, Results of benchmark tests for different numerical BPM atgorithms. Journal of Lightwave Technology, 1995. 13(2): p. 216-224.
  • [218] C.M. Kim, Y.M. Kim and W.K. Kim, Leaky modes of circular slab waveguides: modified Airy functions. IEEE Journal of Selected Topics in Quantum Electronics, 2002. 8(6): p. 1239-1245.
  • [219] A. Gopinath, S. Kim, Vector analysis of optical dielectric waveguide bends using finite-difference method. Journal of Lightwave Technology, 1996. 14(9): p. 2085-2092.
  • [220] P.D. Sewell and T.M. Benson, Efficient curvature analysis of buried waveguides. Journal of Lightwave Technology, 2000. 18(9): p. 1321-1329.
  • [221] M. Rivera, A Finite difference BPM analysis of bent dielectric waveguides. Journal of Lightwave Technology, 1995. 13(2): p. 233-238.
  • [222] P. Sewell, T.M. Benson and P.C. Kendall, Sectorial coordinates for curved optical waveguides. Microwave and Optical Technology Letters, 1997. 14(4): p. 202-204.
  • [223] W.W. Lui, C.L. Xu, T. Hirono, K. Yokoyama and W.P. Huang, Full-vectorial wave propagation in semiconductor optical bending waveguides and equivalent straight waveguide approximations. Journal of Lightwave Technology, 1998. 16(5): p. 910-914.
  • [224] Y.Y. Lu and P.L. Ho, Beam propagation modelling of arbitrarily bent waveguides. IEEE Photonics Technology Letters, 2002. 14(12): p. 1698-1700.
  • [225] D.R. Scrifes, W. Streifer and R.D. Burnham, Curved stripe GaAs: GaAlAs diode lasers and waveguides. Applied Physics Letters, 1978. 32(4): p. 231-234.
  • [226] W.P. Huang and B.E. Little, Power exchange in tapered optical couplers. IEEE Journal of Quantum Electronics, 1991.27: p. 1932-1938.
  • [227] L. Cascio, T. Rozzi and L. Zappelli, Radiation loss of Y-junctions in rib waveguide. IEEE Transactions on Microwave Theory and Techniques, 1995. 43: p. 1788-1797.
  • [228] H. Yajima, Coupled mode analysis of dielectric planar branching waveguides. IEEE Journal of Quantum Electronics, 1978. 14: p. 749-755.
  • [229] W.K. Burns and A.F. Milton, An analytic solution in optical waveguide branches. IEEE Journal of Quantum Electronics, 1980. 16: p. 446-454.
  • [230] M. Kuznetsov, Radiation loss in dielectric waveguides branch structures. Journal of Lightwave Technology, 1985. 3: p. 674-677.
  • [231] E. Borruel, S. Sujecki, P. Moreno, J. Wykes, M. Krakowski, B. Sumpf, P. Sewell, S.C. Auzanneau, H. Wenzel, D. Rodriguez, T.M, Benson, E.C. Larkins and I. Esquivias, Quasi 3D simulation of high brightness tapered lasers. IEEE Journal of Quantum Electronics, 2004. 40(5): p. 463-472.
  • [232] J.G. Wykes, S. Sujecki, P. Sewell, T.M. Benson, E.C. Earkins, I. Esquivias and L. Borruel. Convergence behaviour of coupled electromagnetic / thermal / electronic high power laser models. in IEE Computation in Electromagnetics Conference. 2002. Bournemouth, UK.
  • [233] S. Sujecki, Stability of steady-state high-power semiconductor laser models. Journal of Optical Society of America B, 2007. 24(4): p. 1053-1060.
  • [234] E. Gering, O. Hess and R. Wallenstein, Modelling of the Performance of High-Power diode amplifier systems with on opto-thermal microscopic spatio-temporal theory. IEEE Journal of Quantum Electronics, 1999. 35: p. 320-331.
  • [235] C.Z. Ning, J.V. Moloney, A. Egan and R.A. Indik, A first-principles fully space-time resolved model of a semiconductor laser model. Journal of Optics B: Quantum and Semiclassical Optics, 1997-9: p.681-692.
  • [236] J.V. Moloney, R.A. Indik and C.Z. Ning, Full space time simulation for high brightness semiconductor lasers. IEEE Photonics Technology Letters, 1997. 9: p. 731-733.
  • [237] J. Arias, L. Borruel, B. Romero, I. Esquivias, J.P. Hirtz, J. Nagle and P. Collot. One-Dimensional Simulation of High Power Laser Diode Structures. in NUSOD. 2002. Zurich.
  • [238] H. Wenzel, G. Erbert and P.M. Enders, Improved Theory of the Refractive-Index Change in Quantum-Well Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 1999. 5: p. 637-642.
  • [239] B.E.A. Saleh and M.C. Teich, Fundamentals of photonics. 1991, New York: John Wiley & Sons Inc.
  • [240] S. Adachi, Properties of Aluminium Gallium Arsenide. IEE/Inspec, 1993. EM-007.
  • [241] S. Vurgaftman, J.R. Meyer and L.R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys. Journal of Applied Physics, 2000. 89: p. 5815-5875.
  • [242] G.H.B. Thompson, Physics of Semiconductor Laser Devices. 1990, Chichester: John Wiley & Sons.
  • [243] A.H. Paxton and G.C. Dente, Filament formation in semiconductor laser gain regions. Journal of Applied Physics, 1991. 70: p. 2921-2925.
  • [244] L.Goldberg, M.R. Surette and D. Mehuys, Filament formation in a tapeerd GaAlAs optical ampifier. Applied Physics Letters, 1993. 62 (19): p. 2304-2306.
  • [245] S. Ramanujan and H.G. Winful, Spontaneous emission induced filamentation in flared amplifiers. IEEE Journal of Quantum Electronics, 1996. 32: p. 784-789.
  • [246] J.R. Marciante and G.P. Agrawal, Nonlinear mechanisms of filamentation in broad-area semiconductor lasers. IEEE Journal of Quantum Electronics, 1996. 32: p. 590-597.
  • [247] L. Borruel, S. Sujecki, P. Moreno, J. Wykes, M. Krakowski, M, Calligaro, S.-C. Auznneau, E.C. Larkins and I. Esquivias, Clarinet laser: Semiconductor laser design for high-brightness application. Applied Physics Letters, 2005. 87: p. 101-104.
  • [248] L. Borruel, S. Sujecki, P. Moreno, J. Wykes, P. Sewell, T.M. Benson, E.C. Larkins and I. Esquivias, Modelling of patterned contacts in tapered lasers. IEEE Journal of Quantum Electronics, 2004. 40(10): p. 1384-1388.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0029-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.