PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Filtry mikrofalowe w systemach radiokomunikacyjnych

Autorzy
Identyfikatory
Warianty tytułu
EN
Microvawe filters in radiocommunication systems
Języki publikacji
PL
Abstrakty
PL
W pracy zawarto opis teorii i metod projektowania filtrów mikrofalowych stosowanych w systemach radiokomunikacyjnych. Przedstawiona teoria dotyczy projektowania w oparciu o założoną charakterystykę tłumienia wznoszonego filtru. Na podstawie charakterystyki syntezuje się macierz sprzężeń między rezonatorami filtru. Typowa synteza wykorzystuje idealne inwertery immitancji. Przedstawiono wynikające z tego ograniczenia. Posługując się metodą częstotliwości własnych porównano zachowanie się sprzężonych rezonatorów mikrofalowych z teorią sprzężeń poprzez idealne i rzeczywiste inwertery, wykazując wyższość inwerterów rzeczywistych. Wykazano istnienie dwóch różnych definicji współczynnika sprzężenia między rezonatorami zależnie od stosowanych inwerterów. Podano związek między współczynnikami sprzężenia definiowanymi dla idealnych i rzeczywistych inwerterów, który wykorzystano w metodzie projektowej filtrów szerokopasmowych. Przedyskutowano niejednoznaczność definicji częstotliwości środkowej i względnej szerokości pasma filtru. Pokazano, że macierz sprzężeń może mieć dwie postaci w przypadku filtrów o niesymetrycznch charakterystykach amplitudowych. Zapropnowano nową metodę określania znaków sprzężeń między rezonatorami filtru mikrofalowego. Przedstawiono przykłady realizacji sprzężeń różnych znaków w filtrach grzebieniowych, dwurodzajowych filtrach planarnych i filtrach z rezonatorami dielektrycznymi.
EN
This monograph describes the theory and design methods of microwave filters employed in radiocommunication systems. The theory is based on the insertion loss approach to the approximation and synthesis problem of filters. Assuming the prescribed transmission characteristics the coupling matrix is synthesized or opimized. Ideal immitance inverters are used in classical synthesis. The drawbacks and limitations of the synthesis method due to use of ideal inverters are presented. The advantages of real inverters or ideal inverters is describing couplings between microwave resonators are shown. Employing the eigenfrequency method two different definitions of the coupling coefficient are stated. The formula relating them is developed. The new design method for wide band filters is presented. The relative filter bandwidth and filter center frequency are shown to be not uniquely defined. The possibility to obtain two forms of the coupling matrix for un symmetric filter characteristics is explained. The new method for determining the sign of the coupling between microwave filter resonators is described. The realizations of the comb-line filters, ring and path dual-mode planar filters and dielectric resonator filters with transmission zeros are described.
Rocznik
Tom
Strony
1--153
Opis fizyczny
Bibliogr. 326 poz., tab., rys., wykr.
Twórcy
  • Instytut Systemów Elektronicznych Politechniki Warszawskiej
Bibliografia
  • [1] Temes G.C., Mitry S.K. (red.): Teoria projektowania filtrów, WNT, Warszawa 1978.
  • [2] Oono Y., Yasuura K.: Synthesis of finite passive 2n-terminal networks with prescribed scattering matrices, Mem. Fac. Eng. Kyushu Univ., vol. 14, May 1954, s. 125-177.
  • [3] Penfield P.Jr.: Noise in negative resistance amplifiers, IRE Trans. on Circuit Theory, vol. CT-7, 1960, s. 166-170.
  • [4] Kurokawa K.: Power waves and scattering matrix, IEEE Trans. on Microwave Theory Tech., vol. MTT-13, No. 2, 1965, s. 194-202.
  • [5] Youla D.C.: A tutorial exposition of some key network-theoretic ideas underlying classical insertion-loss filter design, Proc. of the IEEE, vol. 59, No. 5, May 1971, s. 760 799.
  • [6] Collin R.E.: Foundations for microwave engineering, McGraw-Hill, Tokyo 1966.
  • [7] Bissell C.C.: Karl Kupfmuller: a German contributor to the early development of linear systems theory, Int. J. Control, vol. 44, No. 4, 1986, pp. 977-989.
  • [8] Campbell G.A.: An electric wave filter, US Patent 1227113, przyznany w maju 1917.
  • [9] Campbell G.A.: Physical theory of the wave filter, Bell System Tech. J., 1(1), Jan. 1922, s. 1-32.
  • [10] O.J. Zobel: Theory and design of uniform and composite electric wave filters, Bell System Tech. J., 2(1), Jan. 1923, s. 5-39.
  • [11] Zobel O.: Wave filter, US Patent 1538964, przyznany w maju 1925.
  • [12] Foster R.M.: A reactance theorem, Bell System Tech. J., April 1924, s. 259-267.
  • [13] Cauer W.: Die Vierwirklichung von Wechselstromwiderständen vorgeschriebener Frequenzabhängigkeit, Archive für Elektrotechnik, 17(4), 1926, s. 354-399.
  • [14] Cauer W.: Artificial network, US Patent 1958742, zgłoszony 8 czerwca 1928 w Niemczech i 1 grudnia 1930 w USA, przyznany 5 maja 1934.
  • [15] Cauer W.: Electric wave filter, US Patent 1989545, zgłoszony 28 czerwca 1928 w Niemczech i 6 grudnia 1930 w USA, przyznany 29 stycznia 1935.
  • [16] Cauer W.: Unsymetrical electric wave filter, US Patent 1989545, zgłoszony 10 listopada 1932 w Niemczech i 23 listopada 1933 w USA, przyznany 21 lipca 1936.
  • [17] Cauer W.: Theorie der Linearen Wechselstromachaltungen, Berlin 1954.
  • [18] Darlington S.: Synthesis of reactance four poles which produce prescribed insertion loss characteristics, J. Math. Phys., vol. 18, Sept. 1939, s. 257-353.
  • [19] Brune O.: Synthesis of a two terminal network whose driving-point impedance is a prescribed function of frequency, J. Mathematics and Physics, vol. 10, No. 3, October 1931, s. 191-236.
  • [20] Cohn S.B.: Direct-coupled resonator filters, Proc. IRE, vol. 45, Feb. 1957, s. 187-196.
  • [21] Matthaei G.L., Young L., Jones E.M.T.: Microwave fliters impedance matching networks and coupling structures, McGraw-Hill, New York 1964.
  • [22] Ragan G.L. (Editor): Microwave transmission circuits, M.I.T. Rad. Lab Series, vol. 9, McGraw Hill, New York 1948, rozdz. 9 i 10.
  • [23] Dishal M.: Design of dissipative band-pass filters producing desired exact amplitude-frequency characteristics, Proc. IRE, vol. 37, Sept. 1949, s. 1050-1069.
  • [24] Howe G.W.O.: Coupling and coupling coefficients, Wireless Engineer, vol. 9, Sept. 1932, s. 485.
  • [25] Dishal M.: Alignment and adjustment of synchronously tuned multiple-resonant-circuit filters, Proc. IRE, vol. 39, Nov. 1951, s. 1448-1460.
  • [26] Orchard H.J.: Formulas for ladder filters, Wireless Engineer, vol. 30, Jan.1953, s. 3-5.
  • [27] Green E.: Synthesis of ladder networks to give Butterworth or Chebyshev response in passband, Proc. Inst. Elec. Eng. m col. 101 IV, monograph No. 88, 1954.
  • [28] Green E.: Amplitude-frequency characteristics of ladder networks, Chelmsford, Marconi, 1954.
  • [29] Skwirzyński J.K.: Design theory and data for electrical filters, D. van Nostrand, London 1965.
  • [30] Dishal M.: Gaussian response filter design, Elect. Comm., vol. 36, 1959, s. 3-26.
  • [31] Pfitzenmaier G.: Tabellenbuch Tiefpässe, Siemens Atiengesellshaft, Berlin-München 1971.
  • [32] Young L.: Direct-coupled cavity filters for wide and narrow bandwidths, IEEE Trans. on Microwave Theory Tech., vol. MTT-11, May 1963, s. 162-178.
  • [33] Levy R.: Theory of direct coupled-cavity filters, IEEE Trans. on Microwave Theory Tech., vol. MTT-15, June 1967, s. 340-348.
  • [34] Pierce J.R.: Guided-wave frequency range tranducer, US Patent 2626990, zgłoszony 4 maja 1948, przyznany 27 stycznia 1953.
  • [35] Pierce J.R: Parallel-resonator filters. Proc. IRE, vol. 37, Feb. 1949, s. 152-155.
  • [36] Dishal M.: Bandpass filters, US Patent 2749523, zgłoszony 1 grudnia 1951, przyznany 5 czerwca 1955.
  • [37] Kurzrok R.M.: General three-resonator filters in waveguide, IEEE Trans. on Microwave Theory Tech., vol. MTT-14, Jan. 1966, s. 46-17.
  • [38] Kurzrok R.M.: General four-resonator filters at microwave frequencies, IEEE Trans. on Microwave Theory Tech., vol. MTT-14, Jun. 1966, s. 295-296.
  • [39] Rhodes J.D.: The theory of generalized interdigital networks, IEEE Trans. on Circuit Theory, vol. 16, Aug. 1969, s. 280-288.
  • [40] Williams A.E.: A four cavity elliptic waveguide filter, IEEE Trans. on Microwave Theory Tech., vol. MTT-18, Dec. 1970, s. 1109-1114.
  • [41] Atia A.E., Williams A.E.: Narrow bandpass waveguide filters, IEEE Trans. on Microwave Theory Tech., vol. MTT-20, April 1972, s. 258-265.
  • [42] Atia, A.E. Williams A.E.: Narrow-band multiple-coupled cavity synthesis, IEEE Trans. on Circuit and Systems, vol. CAS-21, Sept. 1974, s. 649-655.
  • [43] Abramowicz A., Pospieszalski M.: A dielectric resonator elliptic bandpass filter, Proc. 12th European Microwave Conf., Helsinki 1982, s. 637-642.
  • [44] Cameron R.J., Rhodes J.D.: Asymmetric realizations for dual-mode bandpass filters, IEEE Trans. on Microwave Theory Tech., vol. MTT-29, Jan. 1981, s. 51-58.
  • [45] Fiedziuszko S.J.: Asymmetric canonical dielectric resonator filters, IEEE MTT-S Int. Microwave Symp. Dig., 1983, s. 80-82.
  • [46] Levy R.: Synthesis of general asymmetric singly and doubly terminated cross-coupled filters, IEEE Trans. on Microwave Theory Tech., vol. MTT-42, Dec. 1994, s. 2468-2471.
  • [47] Fröberg C.E.: Introduction to numerical analysis, Reading, MA, Addison-Wesley, 1965, rozdz. 6.
  • [48] Bell H.C.: Canonical asymmetric coupled resonator filters, IEEE Trans. on Microwave Theory Tech., vol. MTT-30, Sept. 1982, s. 1335-1340.
  • [49] Zaki K.A., Chen C., Atia A.E.: Canonical and longitudinal dual-mode dielectric resonator filters without iris, IEEE Trans. on Microwave Theory Tech., vol. MTT-35, Dec. 1987, s. 1130-1155.
  • [50] Rhodes J.D., Cameron R.J.; General extracted pole synthesis technique with applications to low-loss TE01 mode filters, IEEE Trans. on Microwave Theory Tech., vol. MTT-28, Sept. 1980, s. 1018-1027.
  • [51] Cameron R.J.: General prototype network synthesis methods for microwave filters, ESA Journal, vol. 6, 1982, s. 193-206.
  • [52] Cameron R.J.: General coupling matrix synthesis methods for Chebyshev filtering functions. IEEE Trans. Microwave Theory Tech., vol. MTT-47, April 1999, s. 433-442.
  • [53] Easter B., Powell K.J.: Direct coupled resonator filters with improved selectivity, Electronics Letters, vol. 4. No. 19, Sept. 1968, s. 415-416.
  • [54] Kudsia R. Cameron R.J., Tang W.C.: Innovations in microwave filters and multiplexing networks for communications satellite systems, IEEE Trans. on Microwave Theory Tech. vol. MTT-40, June 1992, s. 1133-1137.
  • [55] Rosenberg U., Hägele W.: Advanced multi-mode cavity filter design using source/load-resonance circuit cross couplings, IEEE Microwave Guided Wave Lett., vol. 2, Dec. 1992 s. 508-510.
  • [56] Liang J.-F., Blair W.D.: High Q TE01 mode DR cavity filters for wireless base stations, IEEE MTT-S Int. Microwave Symp. Dig. 1998, s. 825-828.
  • [57] Amari S., Rosenberg U., Bornemann J.: Adaptive synthesis and design of resonator filters with source/load-multiresonator coupling, IEEE Trans. on Microwave Theory Tech. vol. MTT-50, Aug. 2002, s. 1969-1978.
  • [58] Fielder D.C.: A note on zeros of reflection and transmission in a cascade of lossless two-terminal-pair networks, IEEE Trans. on Circuit Theory, Sept. 1959, s. 282-287.
  • [59] Levy R.: Direct synthesis of cascaded quadruplet (CQ) filters, IEEE Trans. on Microwave Theory Tech. vol. MTT-43, Dec. 1995, s. 2940-2945.
  • [60] Levy R., Yao H.-W., Zaki K.A.: Transitional combline/evanescent mode microwave filters, IEEE Trans. on Microwave Theory Tech. vol. MTT-45, Dec. 1997, s. 2094-2099.
  • [61] Levy R., Petre P.: Design of CT and CQ filters using approximation and optimization, IEEE Trans. on Microwave Theory Tech. vol. MTT-49, Dec. 2001, s. 2350-2356.
  • [62] Kudsia C.M., Swamy M.N.S.: Computer aided optimization of microwave filter networks for space application, IEEE MTT-S Int. Microwave Symp. Dig., 1980, s. 410-412.
  • [63] Atia A.E.: Multiple coupled resonator filters synthesis by optimization, IEEE MTT-S Int. Microwave Symp. Dig., 2000, s. 20-27.
  • [64] Lamecki A., Kozakowski P., Mrozowski M.: Fast extraction of coupling matrix for optimization and CAD tuning problems, Proc. 34th European Microwave Conf., Amsterdam 2004, s. 1385-1388.
  • [65] Thomas J.B.: Cross-coupling in coaxial cavity filters - a tutorial overview, IEEE Trans. on Microwave Theory Tech. vol. MTT-51, Apr. 2003, s. 1368-1376.
  • [66] Nowicki W.: Podstawy techniki przenoszenia przewodowego, Zesz. 3, PIT, Warszawa 1948.
  • [67] Żyszkowski Z.: Zarys układów przenoszenia, Prace PIT, Warszawa 1950, s. 141-199.
  • [68] Fabijański J.: Zasady projektowania różnicowych filtrów pasmowoprzepustowych klasy tłumieniowej 1 i 2, Prace PIT, Nr 7, Warszawa 1952.
  • [69] Smoliński A.: Zasady wzmacniania, tom III, Państwowe Wydawnictwo Techniczne, Warszawa 1956.
  • [70] Lenkowski J.: Teoria wąskopasmowych filtrów wielkiej częstotliwości, PWN, Warszawa 1959.
  • [71 ] Przesmycki O.: Filtry elektryczne, WKiŁ, Warszawa 1962.
  • [72] Bellert S.T.: Zarys teorii syntezy liniowych układów elektrycznych, Wydawnictwa Politechniki Warszawskiej, Warszawa 1964.
  • [73] Izydorczyk J., Konopacki J.: Filtry analogowe i cyfrowe, Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego, Katowice 2003.
  • [74] Litwin R., Suski M.: Technika mikrofalowa, WNT, Warszawa 1972.
  • [75] Jeleński A. (red.): Mikrofalowa elektronika ciała stałego, PWN, Warszawa 1976.
  • [76] Bieńkowski Z.: Poradnik ultrakrótkofalowca, WKiŁ. Warszawa 1987.
  • [77] Modelski J., Abramowicz A.: Rezonatory dielektryczne i ich zastosowania, PWN, Warszawa 1990.
  • [78] Rosłoniec S.: Liniowe obwody mikrofalowe, WKiŁ, Warszawa 1999.
  • [79] Dobrowolski J.: Technika wielkich częstotliwości, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2001,
  • [80] Pfitzenmaier G.: Tabellenbuch Mikrowellenbandpasse, Siemens Atiengesellshaft, Berlin-München 1971.
  • [81] H. Howe: Stripline circuit design, Artech House, Dedbam 1974.
  • [82] Minis B.J.: Designing microwave circuits by exact synthesis, Artech House, Boston 1996.
  • [83] Malherbe J.A.G.: Microwave transmission line filters, Artech House, Dedham 1979.
  • [84] Hunter I.: Theory and design of microwave filters, IEE Press, London 2001.
  • [85] Hong J.-S.G., Lancaster J.M.: Microstrip filters for RF/microwave applications, Willey & Sons, New York 2001.
  • [86] Makimoto M., Yamashita S.: Microwave resonators and filters for wireless communication: theory, design and application. Springer-Verlag Berlin 2001.
  • [87] Vale C., et al.: FBAR filters at GHz frequencies, Proc. IEEE Int. Freq. Contr. Symp., 1991, s. 332-336.
  • [88] Snyder R.: All the world is filter, IEEE MTT-S Newsletter, Fall 1990, s. 5-10.
  • [89] Katehi L., et al.: Heterogeneous wafer-scale circuit architectures, IEEE Microwave Magazin, vol. 8, No. 1, Feb. 2007, s. 52-69.
  • [90] Abramowicz A.: Wąskopasmowe filtry eliptyczne z rezonatorami dielektrycznymi, Elektronika, nr 11, 1984, s. 32-34.
  • [91] Abramowicz A.: MIC realization of dielectric resonator elliptic filters, Proc. 19th European Microwave Conf., London 1989, s. 495-500.
  • [92] Maj Sz., Abramowicz A.: Nowa metoda wyznaczania sprzężeń między rezonatorami dielektrycznymi, Mat. VIII KK TOiUE, Poznań 1985, s. 433-436.
  • [93] Zaki K.A., Chen Ch.: Couplings between hybrid mode dielectric resonators, IEEE MTT-S Int. Microwave Symp. Dig., 1987, s. 617-620.
  • [94] Kobayashi Y., Minegishi M.: Precise design of a bandpass filter using high-Q dielectric ring resonators, IEEE Trans. on Microwave Theory Tech., vol. MTT-35, Dec. 1987, s. 1156-1160.
  • [95] Kobayashi Y., Minegishi M.: A low-loss bandpass filter using electrically coupled high-Q TM01?? dielectric rod resonators, IEEE Trans. on Microwave Theory Tech., vol. MTT-36, Dec. 1988, s. 1727-1731.
  • [96] Moraud S., et al.: A new planar type dielectric resonator for microwave filtering, IEEE MTT-S Int. Microwave Symp. Dig. 1998, s. 1307-1310.
  • [97] Liang J.-F., Blair W.D.: High Q TE01 mode DR cavity filters for PCS wireless base stations, IEEE Trans. on Microwave Theory Tech., vol. MTT-46, Dec. 1998, s. 2493-2500.
  • [98] Mansour R.R. et al.: Quasi-dual-mode resonators, IEEE Trans. on Microwave Theory Tech., vol. MTT-48, Dec. 2000, s. 2476-2481.
  • [99] Hong J-S., Lancaster M.L.: Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters, IEEE Trans. on Microwave. Theory Tech., vol. MTT-44, Dec. 1996, s. 2099-2109.
  • [100] Chang C.-Y., Hsu W.-C.: Novel planar, square shaped, dielectric-waveguide, single-, and dual-mode filters, IEEE Trans. on Microwave Theory Tech. vol. MTT-50, Nov. 2002, s. 2527-2536.
  • [101] Abramowicz A., Maj Sz.: Sprzężenie rezonatorów dielektrycznych, Mat. VII Krajowej Konferencji Mikrofalowej MIKON-86, Zakopane 1986, s. 42-45.
  • [102] Abramowicz A., Maj Sz.: Sprzężone rezonatory dielektryczne, Archiwum Elektrotechniki, tom XXXV, Zeszyt 2, 1986, s. 385-396.
  • [103] Abramowicz A.: Exact model of coupled dielectric resonators, Proc. 20th European Microwave Conf, Budapest 1990, s. 1125-1130.
  • [104] Abramowicz A.: Analysis of coupled dielectric resonators by means of eigenfrequency method, Proc. 24th European Microwave Conf., Cannes 1994, s. 1197-1202.
  • [105] Abramowicz A.: Analiza sprzężonych rezonatorów dielektrycznych metodą częstotliwości własnych, Rozprawa doktorska, Politechnika Warszawska, Warszawa 1993.
  • [106] Abramowicz A.: Analysis of transversely coupled dielectric resonators using the mode matching method, Proc. 23rd European Microwave Conf., Madrid 1993, s. 432-425.
  • [107] Abramowicz A.: Influence of mechanical tuning on characteristics and spurious response of dieleetric resonator filters, Proc. of Int. Microwave Conf. MIKON-94, Książ 1994, s. 101-105.
  • [108] Abramowicz A., Derzakowski K.: Coupling between different dielectric resonators and its application to filters design, Proc. 4th Int. Conf. on Electromagnetics for Advanced Applications, Torino 1995, s. 173-175.
  • [109] Abramowicz A., Modelski J.: Design methods for dielectric resonator filters, Proc. ISRAMT'95, Kiyev 1995, s. 714-717.
  • [110] Abramowicz A., Derzakowski K., Krupka J.: Comments on "Study of whispering gallery modes in double disk sapphire resonators", IEEE Trans. on Microwave Theory Techn., vol. MTT-46, May 1998, s. 566.
  • [111] Abramowicz A.: New description of external coupling, Proc. XX-th Nat. Conf. on Circuit Theory and Electronic Circuits, Kołobrzeg 1997, s. 265-270
  • [112] Abramowicz A., Derzakowski K., Krupka J.: New formulation for external coupling analysis and measurements, Proc. 5th Int. Conf. on Electromagnetics for Advanced Applications, Torino 1997, s. 247-249.
  • [113] Abramowicz A., Derzakowski K.: New models of coupling between resonator and transmission line, Proc. Asia-Pacific Microwave Conf. APMC'98, Yokohama 1998, s. 1371-1374.
  • [114] Abramowicz A., Modelski J.: Intermediate bandwidth dielectric resonator filters, Proc. 5th Microwaves and Optronics Conf. MIOP'90, Stuttgart 1990, s. 556-560.
  • [115] Abramowicz A., Modelski J.: Investigation of intermediate-bandwidth dielectric resonator bandpass filters, Proc. 9th National Microwave Conf. MIKON-91, Rydzyna 1991, s. 131-134.
  • [116] Abramowicz A., Modelski J.: Design of intermediate-bandwidth dielectric resonator filters, Proc. 22nd European Microwave Conf., Helsinki 1992, s. 1325-1330.
  • [117] Krupka J., Modelski J., Abramowicz A.: Theory and application of circumferentially magnetized ferrites in tunable devices, Proc. 23rd European Microwave Conf., Madrid 1993, s. 581-584.
  • [118] Krupka J., Modelski J., Abramowicz A.: Tunable devices employing circumferentially magnetized ferrites, Proc. 10th Int. Microwave Conf. MIKON-94, Książ 1994, s. 53-57.
  • [119] Krupka J., Abramowicz A., Derzakowski K.: Tunable dielectric resonator bandpass filter, Proc. XIII Int. Conf. on Microwaves, Radar and Wireless Communications MIKON-2000, Wrocław 2000, s. 517-520.
  • [120] Krupka J., Abramowicz A., Derzakowski K.: Magnetically tunable dielectric resonators operating at frequencies about 2 GHz, The Physics Congress 2003, Edinburgh 2003, s. 31.
  • [121] Derzakowski K., Krupka J., Abramowicz A.: Tunable dielectric resonator with circumferentially magnetized ferrite disks, XV Int. Conf. on Microwaves, Radar and Wireless Communications MIKON-2004, Warsaw 2004, s. 1052-1055.
  • [122] Derzakowski K., Krupka J., Abramowicz A.: Magnetically tunable dielectric resonators and filters, Proc. 34th European Microwave Conf., Amsterdam 2004, s. 1121-1124.
  • [123] Krupka J., Abramowicz A., Derzakowski K.: Magnetically tunable dielectric resonators operating at frequencies about 2 GHz, Journal of Physics D: Applied Physics, vol. 37, 2004, s. 379-384.
  • [124] Krupka J., Abramowicz A., Derzakowski K.: Magnetically tunable filters for cellular communication terminals, IEEE Trans. on Microwave Theory Techn., vol. MTT-54, June 2006, s. 2329-2335.
  • [125] Abramowicz A., Krupka J., Derzakowski K.: Optimization of spurious response in dielectric resonator tunable filters, Proc. XVI Int. Conf on Microwaves, Radar and Wireless Communications MIKON 2006, Kraków 2006, s. 338-341.
  • [126] Abramowicz A., Maj Sz.: Struktury rezonatorów dielektrycznych do stosowania w filtrach i generatorach mikrofalowych. Mat. VII Krajowej Konf. Teoria Obwodów i Układy Elektroniczne, Kazimierz Dolny 1984, s. 570-574.
  • [127] Abramowicz A.: Wpływ pasożytniczych rodzajów rezonansowych na charakterystyki filtrów z rezonatorami dielektrycznymi, Mat XIII Kraj. Konf. Teoria Obwodów i Układy Elektroniczne, Bielsko-Biała 1990, s. 717-721.
  • [128] Krupka J., Abramowicz A., Derzakowski K.: Design and realization of high-Q triple dielectric resonator filters with wide tuning range, Proc. 29th European Microwave Conf., Munich 1999, s. 103-106.
  • [129] Abramowicz A., Modelski J.: Filtry kanałowe z rezonatorami dielektrycznymi o przenikalności 80, Mat. 10 Krajowego Sympozjum Telekomunikacji, Bydgoszcz 1994, s. 296-301.
  • [130] Abramowicz A., Krupka J., Derzakowski K., Triplet dielectric resonator filters with direct coupling, Proc. Int. Conf. on Electromagnetics in Advanced Applications ICEAA'03, Torino 2003, s. 143-146.
  • [131] Abramowicz A.: Projektowanie pasmowoprzepustowych filtrów mikrofalowych o niesymetrycznych charakterystykach, Mat. V Seminarium Radiokomunikacja i Techniki Multimedialne, Warszawa 2004, s. 63-72.
  • [132] Piekarniak M., Abramowicz A., Antoszkiewicz K., Szarecki K.: Łańcuch powielania częstotliwości dla cezowego wzorca częstotliwości, Mat. 8 Krajowej Konf. Mikrofalowej MIKON-88, Gdańsk 1988, s. 254-259.
  • [133] Piekarniak M., Abramowicz A.: Powielacz falowodowy dla cezowego wzorca częstotliwości, Mat. 8 Krajowej Konf. Mikrofalowej MIKON-88, Gdańsk 1988, s. 267-270.
  • [134] Kock M., Henze F., Abramowicz A., Krupka J., Hinken J.: Realization of a bandpass filter with dielectric quarter-cut resonators. Proc. 10th Int. Microwave Conf. MIKON-94, Książ 1994, s. 97-100.
  • [135] Piekarniak M., Adamski M., Ebert M., Abramowicz A.: A microwave frequency synthesizer for the geodetic radiointerferometer, Proc. 9th National Microwave Conf. MIKON-91, Rydzyna 1991, s. 436-439.
  • [136] Abramowicz A.: Realization of switched filter banks for the noise measurement system, Proc. 9th National Microwave Conf. MIKON-91, Rydzyna 1991, s. 84-87.
  • [137] Abramowicz A.: Split-duplexer for PCS, Proc. Int. Conf. on Microwaves & Radar MIKON-98, Kraków 1998, s. 523-527.
  • [138] Abramowicz A., Modelski J.: Filtry i zwrotnice dla telefonii komórkowej, Mat. Krajowej Konf. Radiodyfuzji i Radiokomunikacji KKRR'99, Poznań 1999, s. 110-113.
  • [139] Wojtasiak W., Gryglewski D., Abramowicz A.: Programowalny konwerter 2.4-3.5GHz z rozdziałem częstotliwości, Mat. Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji KKRRiT 2004, Warszawa 2004, s. 146-149.
  • [140] Abramowicz A.: New design method for interdigital and comb-line filters, Proc. 10th Int. Microwave Conf. MIKON-94, Książ 1994, s. 106-110.
  • [141] Abramowicz A.: Unified method for design of comb-line and interdigital filters. Proc. XVI-th National Conf. on Circuit Theory and Electronic Circuits, Kołobrzeg 1993, s. 530-535.
  • [142] Abramowicz A.: Wide band combline filters, Proc. XV Int. Conf. on Microwaves, Radar and Wireless Communications MIKON-2004, Warsaw 2004, s. 1048-1051.
  • [143] Abramowicz A.: Design and realization of wide band comb-line filters, Proc. Asia-Pacific Microwave Conf., Delhi 2004, Invited Paper, (4 strony - materiały konferencyjne na CD, strony nienumerowane).
  • [144] Abramowicz A.: Eigenfrequency based comparison of coupling models with real coupled resonators, Proc. XVI Int. Conf. on Microwaves, Radar and Wireless Communications, MIKON 2006, Krakow 2006, s. 608-611.
  • [145] Abramowicz A.: Wide band direct-coupled resonator filters, Proc. Int. Conf. ICSES, Łódź 2006, s. 479-482.
  • [146] Huber S., Manzel M., Bruchlos H., Thrum F., Klinger M., Abramowicz A.: TBCCO - microstrip filters based on dual-mode ring resonators, Proc. European Conf. on Applied Superconductivity EUCAS'97, July 1997, s. 351-354.
  • [147] Abramowicz A.: Investigation of the HTS microstrip filters based on dual-mode ring resonators, Proc. Int. Conf. on Microwaves & Radar MIKON-98, Krakow 1998, s. 8-12.
  • [148] Zeisberger M., Manzel M., Bruchlos H.A., Diegel M, Thrum F., Klinger M., Abramowicz A: Tl2Ba2Ca1Cu2Ox, Thin films for microstrip filters, IEEE Trans. on Applied Superconductivity, vol. 9, No 3, June 1999, s. 3897-3900.
  • [149] Abramowicz A.: Microstrip filters based on dual-mode planar resonators, XIV Int. Conf. on Microwaves, Radar and Wireless Communications MIKON-2002, Gdańsk 2002, s. 616-619.
  • [150] Abramowicz A.: Filtry z nadprzewodnikami wysokotemperaturowymi, Elektronika, nr 4, 2005, s. 4-9.
  • [151] Abramowicz A., Sibiga A., Znojkiewicz M.: Design and realization of low cost waveguide filters and diplexers, XIV Int. Conf. on Microwaves, Radar and Wireless Communications MIKON-2002, Gdańsk 2002, s. 603-606.
  • [152] Abramowicz A.: Projektowanie zwrotnic zawierających elementy SMD i dielektryczne rezonatory TEM, Mat. 10 Krajowego Sympozjum Telekomunikacji, Bydgoszcz 1995, tom E, s. 225-234.
  • [153] Antoniuk J., Żukociński M., Abramowicz A., Gwarek W.: Investigation of resonant frequencies of helical resonators, Proc. Int. Conf. MICROCOLL'03, Budapest 2003, s. 201-204.
  • [154] Antoniuk J., Żukociński M., Abramowicz A., Gwarek W.: Resonant frequencies of helical resonators, Proc. XV Int. Conf. on Microwaves, Radar and Wireless Communications MIKON-2004, Warsaw 2004, s. 1044-1047.
  • [155] Białas S., Abramowicz A.: Comments on ,,Analysis and realization of L-band dielectric resonator microwave filters", IEEE Trans. on Microwave Theory Tech., vol. MTT-41, Nov. 1993, s. 2044-2046.
  • [156] Białas S., Abramowicz A.: An efficient tool for the design of microwave elliptic filters, Proc. XVI-th National Conf. on Circuit Theory and Electronic Circuits, Kołobrzeg 1993, s. 421-426.
  • [157] Białas S., Abramowicz A.: Design of microwave filters with optimization, Proc. 10th Int. Microwave Conf: MIKON-94. Książ 1994, s. 323-326.
  • [158] Łozowski A., Derzakowski K., Abramowicz A.: Expert system for analysis and design of dielectric resonator structures, Proc. XVI-th Nat. Conf. on Circuit Theory and Electronic Circuits, Polana Zgorzelisko 1995, s. 615-620.
  • [159] Łozowski A., Derzakowski K., Abramowicz A.: Design of dielectric resonator filters in the expert system, Proc. XI Int. Microwave Conf. MIKON-96, Warsaw 1996, s. 546-550.
  • [160] Abramowicz A., Nosal Z., Faber M.: Tunable bandpass filter in 0.8 µm CMOS MEMS technology for 1.7 GHz-2 GHz communication applications, Mat. Krajowego Sympozjum Telekomunikacji'2005, Bydgoszcz 2005, s. 126-130.
  • [161] Nosal Z., Abramowicz A.: Design and modelling of a tunable MEMS filter, Proc. Microwave Conf. COMITE, Prague 2005, s. 147-150.
  • [162] Abramowicz A.: Letter to the editor, Microwave Journal, October 1989, s. 165.
  • [163] Abramowicz A.: Comments on "Finite elements for microwave device simulation: application to microwave dielectric resonator filters", IEEE Trans. on Microwave Theory Tech., vol. MTT-41, April 1993, s. 737.
  • [164] Derzakowski K., Abramowicz A.: Dielectric resonator figure of merit, Bulletin of the Polish Academy of Sciences, Technical Sciences, No. 2 1996, s. 129-139.
  • [165] Abramowicz A.: Rezonatory dielektryczne w filtrach mikrofalowych, Mat. V Krajowego Sympozjum URSI, Toruń 1987, s. 240-244.
  • [166] Maj Sz., Abramowicz A., Modelski J.: Computer aided design of mechanical tuning structures of a dielectric resonator on microstrip substrate, Proc. 17th European Microwave Conf., Rome 1987, s. 859-864.
  • [167] Abramowicz A.: Stabilność częstotliwości rezonatorów dielektrycznych w różnych strukturach, Mat. X Krajowej Konf. Teoria Obwodów i Układy Elektroniczne, Gdańsk 1987, s. 767-772.
  • [168] Abramowicz A.: Microwave filters employing dielectric resonators, Proc. 10th Nat. Scientific and Technical Conf.: Microwave Technology & Optical Communications, Varna 1988, s. 576-584.
  • [169] Abramowicz A., Wasilewski E.: Rezonatory dielektryczne z ceramiki NP0, Mat. 8 Krajowej Konf. Mikrofalowej MIKON-88, Gdańsk 1988, s. 385-388.
  • [170] Abramowicz A.: Sprzężenie między rezonatorem dielektrycznym i niesymetryczną linią paskową, Mat. XII Krajowej Konf. Teoria Obwodów i Układy Elektroniczne, Rzeszów, 1989, s. 355-359.
  • [171] Abramowicz A.: New model of coupled transmission lines, Proc. XV-th Nat. Conf. on Circuit Theory and Electronic Circuits, Polanica Zdrój 1994, s. 597-601.
  • [172] Abramowicz A.: New model of coupled transmission lines, IEEE Trans. on Microwave Theory Tech., vol. MTT-43, June 1995, s. 1389-1392.
  • [173] Abramowicz A., Celuch-Marcysiak M., Gwarek W.; New consistent model of coupled transmission lines and its verification by the fd-td method, Proc. 25th European Microwave Conf., Bologna 1995, s. 696-700.
  • [174] Abramowicz A., Celuch-Marcysiak M., Ebert M.: The weakness of the matrix analysis of coupled transmission lines, Proc. 26th European Microwave Conf, Prague 1996, s. 858-861.
  • [175] Feldkeller R.: Betriebsdämpfung und Echodämpfung von verlustfreien Siebschaltungen, Telegr. Fenspr. Tech., vol. 27, September 1938, s. 342-343.
  • [176] Belevitch V.: Classical network theory, Holden-Day, San Francisco 1968.
  • [177] Richards P.I.: Resistor transmission-line circuits, Proc. IRE, vol. 36, Feb. 1948, s. 217-220.
  • [178] Wiles A.: Modular elliptic curves and Fermat's last theorem. Annals of Mathematics, No. 142, 1995, s. 443-551.
  • [179] Galwas B.: Miernictwo mikrofalowe, WKiŁ, Warszawa 1985.
  • [180] Sabath F., Mokole E.L., Samaddar S.N.: Definition and classification of ultra wideband signals and devices, The Radio Science Bulletin, No. 313, June 2005, s. 12-26.
  • [181] Clarke A.C.: Extraterestrial relays, Wireless World, vol. 51, No. 10, Oct. 1945, s. 305-308.
  • [182] W. Hołubowicz, P. Płóciennik, A. Różański: Systemy łączności bezprzewodowej, Holkom, Poznań 1997.
  • [183] Bem D.J.: Radiodyfuzja Satelitarna, WKiŁ, Waszawa 1990.
  • [184] Pawelec J.J.: Radiosterowanie i Łączność Kosmiczna, WKiŁ, Warszawa 1991.
  • [185] Rasiukiewicz M., Leśnicki A.: Podstawy systemów horyzontowych linii radiowych, WKiŁ, Warszawa 1983.
  • [186] Kołakowski J., Cichocki J.: UMTS System telefonii komórkowej trzeciej generacji, WKiŁ, Warszawa 2003.
  • [187] Wojnar A.: Systemy radiokomunikacji ruchomej lądowej, WKiŁ, Warszawa 1989.
  • [188] Wesołowski K.: Systemy radiokomunikacji ruchomej, (wyd.3), WKiŁ, Warszawa 2003.
  • [189] Bieńkowski Z.: Poradnik Ultrakrótkofalowca, WKiŁ, Warszawa 1988.
  • [190] www.esti.org
  • [191] www.3gpp.org
  • [192] Shannon C.E.: A mathematical theory of communication, Bell System Tech. Journal, vol. 27, 1948, s. 379- 423 i 623-656.
  • [193] Rappaport T.S.: Wireless communications, Prentice Hall PTR, 1996.
  • [194] Rofougaran A.R., Rofougaran M., Behzad A.: Radios for next-generation wireless networks, IEEE Microwave Magazine, vol. 6, No. 1, March 2005, s. 38-43.
  • [195] Qiong W., Donglin S.: Prediction of the noise and gain specifications of the RF receiver, 17th Int. Zurich Symp. on Electromagnetic Compatibility, Zurich 2006, s. 262-264.
  • [196] Come B. et al.: Impact of front-end non-idealities on bit error rate performance of WLAN-OFDM transceivers, Microwave Journal, Feb. 2001, s. 126-140.
  • [197] Lindoff B., Malm P.: BER performance analysis of a direct conversion receiver, IEEE Trans. on Communications, vol. 50, No. 5, May 2002, s. 856-865.
  • [198] Simon R.W., Hammond R.B., Berkowitz S.J., Willemsen B.A.: Superconducting microwave filter systems for cellular telephone base stations, Proc. of the IEEE, vol. 92, No 10, Oct. 2004, s. 1585-1596.
  • [199] Salkola M.I., Scalapino D.J.: Benefits of superconducting technology to wireless CDMA networks, IEEE Trans. on Vehicular Technology, vol. 55, Issue 3, May 2006, s. 943-955.
  • [200] Salkola M.I.: CDMA capacity - Can you supersize that?, Proc. IEEE Wireless Communications and Networking Conf. 2002, s. 768-773.
  • [201] Kudsia C.: Optimization of satellite transponder characteristics for maximum spectral efficiency, Proc. AIAA 12th Int. Communications Satellite Systems Conf., Arlington 1988, s. 194-202.
  • [202] Benedeto S., Biglieri F.: Nonlinear qualization of digital satellite channels, IEEE Journal on Selected Areas in Communications, vol. SAC-1, No. 1, Jan. 1983, s. 57-62.
  • [203] Markell R.: "Better ttan Bessel" Linear phase filters for data communications, Application Note 56, Linear Technology Corp., Jan. 1994.
  • [204] Jones N.G., Moore R.A., Huber C.J.: Optimized SAW spectral control filters for digital satellite communications systems, IEEE Trans. on Sonics and Ultrasonics, vol. 28, No. 3, May 1981, s. 171-178.
  • [205] Robert M., Livingston R.M.: Predistorted waveguide filters for use in communications systems, IEEE G-MTT Int. Microwave Symp., Dig. 1969, s. 291-297.
  • [206] Williams A.E., Bush W.G., Bonetti R.R.: Predistortion techniques for multicoupled resonator filters, IEEE Trans. on Microwave Theory Tech., vol. MTT-33, May 1985, s. 402-407.
  • [207] Yu M. et al.: Symmetrical realization for predistorted microwave filters, IEEE MTT-S Int. Microwave Symp. Dig. 2005, s. 1-4.
  • [208] Psiaki M.L. et al.: Design and practical implementation of multifrequency RF front ends using direct RF sampling, IEEE Trans. on Microwave Theory Tech., vol. MTT-53, Oct. 2005, s. 3082-3089.
  • [209] Harris F.J., Dick C., Rice M.: Digital receivers and transmitters using polyphase filter bank for wireless communication, IEEE Trans. on Microwave Theory Tech., vol. MTT-51, April 2003, s. 1395-1412.
  • [210] Kumagai J.: Radio revolutionaries, IEEE Spectrum, Jan. 2007, s. 24-28.
  • [211] Friis H.T.: Noise figure of radio receivers, Proc. IRE, vol. 40, 1952, s. 1461-1471.
  • [212] Loke A., Ali F.: Direct conversion radio for digital mobile phones - design issues, status, and trends, IEEE Trans. on Microwave Theory Tech., vol. MTT-50, Nov. 2002, s. 2422-2434.
  • [213] Ali-Ahmad W.Y.: Effective IM2 estimation for two-tone and WCDMA modulated blockers in zero-IF, RE Design, April 2002, s. 32-40.
  • [214] Parikh H.K., Michalson W.R., Duckworth R.J.: Performance evaluation of the RF receiver for precision positioning system, ION GNSS 17th Int. Technical Meeting of the Satellite Division, Long Beach, Sept. 2004, s. 1908-1917.
  • [215] Sato H., Kurian J., Naito M.: Third-order intermodulation measurements of microstrip bandpass filters based on high-temperature superconductors, IEEE Trans. on Microwave Theory Tech., vol. MTT-52, Dec. 2004, s. 2658-2663.
  • [216] Willemsen B.A., Dahm T., Sealapino D.J.: Theory of intermodulation in thin film high-Tc superconducting microstrip hairpin resonators: experiments and theory. Applied Phys. Lett., vol. 81, No. 4, Dec. 1997, s. 3980-3989.
  • [217] Woo R.: Final report on RF voltage breakdown in satellite microwave payload, ESA Journal, vol. 14, 1990, s. 467-478.
  • [218] Anderson D. et al.: Microwave breakdown in resonators and filters, IEEE Trans. on Microwave Theory Tech., vol. MTT-47, Dec. 1999, s. 2547-2556.
  • [219] Chen M.H. et al.: A contiguous band multiplexer, COMSAT Tech. Rev., vol. 6, No. 2, Fall 1976, s. 285-307
  • [220] Hill A., Radcliffe C.: The design of a GSM base station tuneable combiner, Microwave Engineering Europe, Oct. 1992, s. 57-65.
  • [221] Noguchi K. et al.: SAW antenna duplexer promotes miniaturization of Japan CDMA mobile terminals for market, OKI Technical Review, Issue 190, Vol. 69, No. 2. April 2002, s. 54-57.
  • [222] Wakino K., Nishikawa T., Ishikawa Y.: Miniaturized diplexer for land mobile communication using high dielectric ceramics, IEEE MTT-S Int. Microwave Symp. Dig., 1981, s. 185-187.
  • [223] Podcameni A., Conrado L.F.M.: Design of microwave oscillators and filters using transmission mode dielectric resonators coupled to microstrip-lines. IEEE Trans. on Microwave Theory Tech., vol. MTT-33, Dec. 1985, s. 1329-1332.
  • [224] Kuroda K: Derivation methods of distributed constant filters from lumped constant filters, text for lectures at Joint Meeting of Kansai Branch of Inst. of Elect. Communication, Electrical and Illumina. Engineers of Japan, Oct. 1952, s. 32 (po japońsku)
  • [225] Levy R.: A generalized equivalent transformation for distributed networks, IEEE Trans. on Circuit Theory, vol. 12, Sept 1965, s. 457-458.
  • [226] Baum R.F.: Design of unsymmetrical band-pass filters, IRE Trans. on Circuit Theory, vol. 4, June 1957, s. 33-40.
  • [227] Schoeffler J.D.: Insertion loss design of symmetrical lattice piezoelectric resonator filters with symmetrical or unsymmetrical pass bands, IRE Trans. on Circuit Theory, vol. 9, Sept. 1962, s. 251 -256.
  • [228] Swanson D., Macchiarella G.: Microwave filter design by synthesis and optimization, IEEE Microwave Magazine, April 2007, s. 55-69.
  • [229] Rhodes J.D.: A lowpass prototype network for microwe linear phase filters, IEEE Trans. on Microwave Theory Tech., vol. MTT-18, June 1970, s. 290-301.
  • [230] Bell H.C.: The coupling matrix in low-pass prototype filters, IEEE Microwave Magazine, April 2007, s. 70-76.
  • [231] Jokela K.: Narow-band stripline or microstrip filters with transmission zeros at real and imaginary frequencies, IEEE Trans. on Microwave Theory Tech., vol. MTT-28, July 1980, s. 542-547.
  • [232] Cameron R.J., Harish A.R., Radcliffe C.J.: Synthesis of advanced microwave filters without diagonal cross-couplings, IEEE Trans. on Microwave Theory Tech., vol. MTT-50, Dec. 2002, s. 2862-2872.
  • [233] Lapidus A., Rossiter C.: Cross-coupling in microwave bandpass filters. Microwave Journal, Nov. 2004, s. 22-46.
  • [234] Hershtig R., Levy R., Zaki K.A.: Synthesis and design of cascaded trisection (CT) dielectric resonator filters, Proc. 27th European Microwave Conf., Tel Aviv 1997, s. 784-791.
  • [235] Rosenberg U., Amari S.: Novel coupling schemes for microwave resonator filters, IEEE Trans. on Microwave Theory Tech., vol. MTT-50, Dec. 2002, s. 2897-2902.
  • [236] Van Valkenburg M.E.: Introduction to modern network synthesis, Wiley, New York 1960.
  • [237] Yildirim N., et al.: A revision of cascade synthesis theory covering cross coupled filters, IEEE Trans. on Microwave Theory Tech., vol. MTT-50, June 2002, s. 1536-1543.
  • [238] Atia W.A., Zaki K.A., Atia A.E.: Synthesis of general topology multiple coupled resonator filters by optimization, IEEE MTT-S Int. Microwave Symp. Dig., June 1998, s. 821-824
  • [239] Amari S.: Synthesis of cross-coupled resonator filters using an analytical gradient-based optimization technique, IEEE Trans. on Microwave Theory Tech., vol. MTT-48, Sept 2000, s. 1559-1564.
  • [240] Lamecki A., Kozakowski P., Mrozowski M.: Fast synthesis of coupled-resonator filters, IEEE Microwave and Wireless Components Letters, vol. 14, April 2004, s. 174-176.
  • [241] Kozakowski P., Lamecki A., Sypek P., Mrozowski M.: Eigenvalue approach to synthesis of prototype filters with source/load coupling, IEEE Microwave and Wireless Components Letters, vol.15, Feb. 2005, s. 98-100.
  • [242] Bell H.C.: Transformed-variable syntesis of narrow-bandpass filters, IEEE Trans. on Circuits and Systems, vol. 26, June 1979, s. 389-394.
  • [243] Cameron R.J.: Advance coupling matrix synthesis techniques for microwave filters, IEEE Trans. on Microwave Theory Tech., vol. MTT-51, Jan. 2003, s. 1-10.
  • [244] Orsucci M., Reggiani M., Stacchiotti G.: On synthesis of bandpass filters with bridged topology, IEEE Trans. on Circuits and Systems, vol. 24, May 1977, s. 252-260.
  • [245] Wang X., Di Y., Gardner P., Ghafouri-Shiraz H.: Frequency transform synthesis method for cross-copled resonator bandpass filters, IEEE Microwave and Wireless Components Letters, vol. 15, No. 8, Aug. 2005, s. 533-535.
  • [246] Sharpe C.B.: A general Tchebycheff rational function, Proc. IRE, vol. 42, Feb. 1954, s. 454-457.
  • [247] Milosavljevic Z.D.: Design of generalized Chebyshev filters with asymmetrically located transmission zeros, IEEE Trans. on Microwave Theory Tech., vol. MTT-53, July 2005, s. 2411-2415.
  • [248] Cameron R.J., Faugere J.C., Seyfert F.: Coupling matrix synthesis for a new class of microwave filter configuration, IEEE MTT-S Int. Microwave Symp. Dig., 2005, s. 119-122.
  • [249] Macchiarella G.: Synthesis of an in-line prototype filter with two transmission zeros without cross couplings, IEEE Microwave and Wireless Components Letters, vol. 14, No. 1, Jan. 2004, s. 19-21.
  • [250] Tsai C.-M., Lee H.-M.: The effects of component Q distribution on microwave filters, IEEE Trans. on Microwave Theory Tech., vol. MTT-54, April 2006, s. 1545-1553.
  • [251] Kudsia C.M.: Computer aided optimization of microwave filter networks for space application, IEEE MTT-S Int. Microwave Symp. Dig., 1980, s. 410-412.
  • [252] Atia A.F., Yao H.-W.: Tuning & measurements of couplings and resonant frequencies for cascaded resonators, IEEE MTT-S Int. Microwave Symp. Dig., 2000, s. 1637-1640.
  • [253] Lamperez A.G., Sarkar T., Salazar Palma M.: Filter model generation from scattering parameters using the Cauchy method, Proc. 32nd Microwave European Conf., Sept. 2002, s. 413-416.
  • [254] Miraftab V., Mansour R.R.; Computer-aided tuning of microwave filters using fuzzy logic, IEEE Trans. on Microwave Theory Tech., vol. MTT 50, Dec. 2002, s. 2781-2788.
  • [255] Seyfert F. et al.: Extraction of coupling parameters for microwave filters: determination of a stable rational model from scattering data, IEEE MTT-S Int. Microwave Symp. Dig., 2003, s. 25-28.
  • [256] XFDTD, www.remcom.com
  • [257] QuickWave, www.qwed.com
  • [258] CST Microwave Studio, www.cst.com
  • [259] HFSS, www.ansoft.com
  • [260] µMicrowave Wizard, www.mician.com
  • [261] IE3D, www.zeland.com
  • [262] WASP-NET, www.mig-germany.com
  • [263] SONNET, www.sonnetsoftware.com
  • [264] Sachse K.: Analiza i właściwości linii transmisyjnych i falowodów o wielu warstwach dielektrycznych i półprzewodnikowych, Wydawnictwo Politechniki Wrocławskiej, Wrocław 1991.
  • [265] Djordjevic A.R., Bazdar M.B., Sarkar T.K., Harington R.F.: LINPAR software and users manual, Artech House, Boston 1996.
  • [266] Bethe H.A.: Theory of diffraction of small holes, Phys. Rev., vol. 66, Oct. 1944, s. 163-182.
  • [267] Snyder R.V.: Dielectric resonator filters with wide stopbands, IEEE Trans., on Microwave Theory Tech., vol. MTT-40, Nov. 1992, s. 2100-2103.
  • [268] Bandler J.W., Salama A.: Functional approach to microwave postproduction tuning, IEEE Trans. on Microwave Theory Tech., vol. MTT-33, April 1985. s. 302-310.
  • [269] Snyder R.V.: Practical aspects of microwave filter development, IEEE Microwave Magazine, April 2007, s. 42-54.
  • [270] Sucher M., Fox J.: Handbook of microwave measurements, tom 2, Polytechnic Press, 1963.
  • [271] Cohn B.: Microwave bandpass filters containing high-Q dielectric resonators, IEEE Trans. on Microwave Theory Tech., vol. MTT-16, April 1968, s. 218-227.
  • [272] James D.S., Painchaude G.R., Hoefer W.J.R.: Aperture coupling between microstrip and resonant cavities, IEEE Trans. on Microwave Theory Tech., vol. MTT-25, May 1977, s. 392-396.
  • [273] Komatsu Y., Murakami Y.: Coupling coefficient between microstrip line and dielectric resonator, IEEE Trans. on Microwave Theory Tech., vol. MTT-31, Jan. 1983, s. 34-40.
  • [274] Bandler W. et al.: Microstrip filter design using direct EM field simulation, IEEE Trans. on Microwave Theory Tech., vol. MTT-42, July 1994, s. 1353-1359.
  • [275] Bila S. et al.: Direct electromagnetic optimization of microwave filters, IEEE Microwave Magazine, vol. 2, Mar. 2001, s. 46-51.
  • [276] Swanson D.G., Wenzel R.J.: Fast analysis and optimization of combline filters using FEM, IEEE, MTT-S Int. Microwave Symp. Dig., 2001, s. 1159-1162.
  • [277] Ismail M.A. et al.: EM based design of large scale dielectric resonator filters and multiplexers by space mapping, IEEE Trans. on Microwave Theory Tech., vol. MTT-52, Jan. 2004, s. 386-392.
  • [278] Snyder R.V.: Informacja prywatna, maj 2006.
  • [279] Kozakowski P., Mrozowski M.: Automated CAD of coupled resonator filters, IEEE Microwave Wireless Compon. Lett., vol. 12, Dec. 2002, s. 470-472.
  • [280] Williams D.F., Rogers J.E., Halloway C.L.: Multiconductor transmission-line characterization: representations, approximations, and accuracy, IEEE Trans. on Microwave Theory Tech., vol. MTT-47, April 1999, s. 403-409.
  • [281] Tellegen D.: The gyrator, a new electric network element, Philips Research Reports 3, 1948, s. 81.
  • [282] Sturley K.R.: Radio receiver design, Part I, Chapman & Hall, London 1945, rozdział.
  • [283] Rajski Cz.: Teoria obwodów t. 1, WNT, Warszawa 1971.
  • [284] Microwave Office, Applied Wave Research, Inc., www.mwoffice.com
  • [285] McDonald N.A.: Electric and magnetic coupling through small apertures in shield walls of any thickness, IEEE Trans. on Microwave Theory Tech., vol. MTT-20, Oct. 1972, s. 689-695.
  • [286] Liang J.-F., Zaki K.A., Atia A.E.: Mixed modes dielectric resonator filters, IEEE Trans. on Microwave Theory Tech., vol. MTT-42, Dec. 1994, s. 2449-2454.
  • [287] Accatino L. et al.: Dual-mode filters with grooved/splitted dielectric resonators for cellular-radio base stations, IEEE Trans. on Microwave Theory Tech., vol. MTT-50, Dec. 2002, s. 2882-2889.
  • [288] Awai I., Oda Y.: FDTD calculation of coupling coefficient between two resonators, IEEE MTT-S Int. Microwave Symp. Dig. 1998, s. 833-836.
  • [289] Chen J., Hong W., Liang C.: A new model of generalized inventor and its applications, IEEE Trans. on Microwave Theory Tech., vol. MTT-45, Jan. 1997, s. 132-135.
  • [290] Ahn D. et al.: Accurate recursive invertor formula for the correction of phase variation effect on bandpass filters, Proc. 29th European Microwave Conf., Munich 1999, s. 203-206.
  • [291] Fathelbab W.M., Steer M.B.: A reconfigurable bandpass filter for RF/microwave multifunctional systems, IEEE Trans. on Microwave Theory Tech., vol. MTT-53, March 2005, s. 1111-1116.
  • [291] Hwang H.Y., Yun A.-W.: The design of bandpass filters considering frequency dependence of inverters, Microwave Journal, September 2002, s. 154-163
  • [292] Bell H.C., Atia A., Yildirim N., Levy R.: Dyskusja na liście dyskusyjnej grupy MTT-8 Filters and Passive Components, www.yahoogroups.com, 15-17 czerwiec 2002.
  • [293] Levy R.: Synthesis of general asymmetric singly- and doubly-terminated cross-coupled filters, IEEE Trans. Microwave Theory Tech., vol. MTT-42, Dec. 1994, s. 2468-2471.
  • [294] Pond C.W.: Computing the response of lossy crystal and LC filters, RF Design, August 1988, s. 53-59.
  • [295] Crawford J.: Accurately predict finite Q effects in bandpass filters, RF Design, March 1990, s. 119-123.
  • [296] Freed J.G.: A program for the design of coupled resonator bandpass filters, RF Design, September 1992, s. 120-126.
  • [297] Davis F.: Matching network designs with computer solutions, Motorola Application Note AN-267.
  • [298] Youla D.C.: A new theory of broadband matching, IEEE Trans. on Circuit Theory, CT-11, March 1964, s. 30-50.
  • [299] Cuthbert T.: Wideband direct -coupled filters having exact response shapes, IEEE MTT-S Newsletter, Spring 1996, s. 27-38.
  • [300] Bensasson A.: Wzmacniacze pasmowe, WNT, Warszawa 1972.
  • [301] Analiza i projekt systemu transmisji i przetwarzania danych z minisatelity, Sprawozdanie z grantu KBN Nr ST12D02524, Instytut Radioelektroniki Politechniki Warszawskiej, grudzień 2004.
  • [302] Yildirim N., Karaaslan M., Sen Y., Sen O.A.: Cascaded triplet filter design using cascade synthesis approach, IEEE MTT-S Int. Microwave Symp. Dig., 1999, s. 903-906.
  • [303] Liang J.-F., Zhang D.: General coupled resonator filters design based on canonical asymmetric building blocks, IEEE MTT-S Int. Microwave Symp. Dig., 1999, s. 907-910.
  • [304] Atia A.E., Williams A.E.: Dual mode canonical waveguide filters, IEEE Tans. Trans. on Microwave Theory Tech., vol. MTT-25, Dec. 1977, s. 1021-1026.
  • [305] Atia A.E., Williams A.E.: General TE011-mode waveguide bandpass filters, IEEE Trans. on Microwave Theory Tech., vol. MTT-24, Oct. 1976, s. 640-648.
  • [306] Atia A.E., Boneti R.R.: Generalized dielectric resonator filters, Comsat Technical Review, vol. 11, No. 2, Fall 1981, s. 321-343.
  • [307] Hong J.-S., Lancaster M.J.: Transmission line filters with advanced filtering characteristics, IEEE MTT-S Int. Microwave Symp. Dig., 2000, s. 319-322.
  • [308] Amari S., Rosenberg U.: Synthesis and design of novel in line cavity filters with one or two real transmission zeros, IEEE Trans. on Microwave Theory Tech., vol. MTT-52, May 2004, s. 1464-1478.
  • [309] Amari S., Macchiarella G.: Synthesis of inline filters with arbitrarily placed attenuation poles by using nonresonating nodes, IEEE Trans. on Microwave Theory Tech., vol. MTT-53, Oct. 2005, s. 3075-3081.
  • [310] Rosenberg U., Hägele W.: Consideration of parasitic bypass couplings in overmoded cavity designs, IEEE Trans. on Microwave Theory Tech., vol. MTT-42, July 1994, s. 1301-1306.
  • [311] Nishikawa T., Wakino K., Wada H., Ishikawa Y.: 800 MHz band dielectric channel dropping filter, IEEE MTT-S Int. Microwave Symp. Dig., 1985, s. 289-292.
  • [312] Amari S., Rosenberg U.: Characteristics of cross (bypass) coupling through higher/lower order modes and their applications in elliptic filter design, IEEE Trans. on Microwave Theory Tech., vol. MTT-53, Oct. 2005, s. 3135-3141.
  • [313] Chen C.-C., C.hen Y.R., Chang C.-Y.: Miniaturized microstrip cross-coupled filters using quarter wave or quasi-quarter-wave resonators, IEEE Trans. on Microwave Theory Tech., vol. MTT -51, Jan. 2003, s. 120-131.
  • [314] Nishikawa T., Wakino K., Tsunoda K., Ishikawa Y.: Dielectric high-power bandpass filter using quarter-cut TE01? image resonator for cellular base station, IEEE Trans. on Microwave Theory Tech., vol. MTT-35, Dec. 1987, s. 1150-1155.
  • [315] Fiedziuszko S.J.: Electromagnetic filter with multiple resonant cavities, European Patent 0 104 735 B1, przyznany 9 października 1991 r.
  • [316] Fiedziuszko S.J.: Dielectric-resonator design shrinks satellite filters and resonators, MSN & CT, Aug. 1985, s. 97-112.
  • [317] Fiedziuszko S.J.: Dual mode dielectric resonator loaded cavity filters, IEEE Trans. on Microwave Theory Tech., vol. MTT-30, Sept. 1982, s. 131-1316.
  • [318] Hunter I.C., Rhodes D.J.: Dual-mode filters with conductor loaded dielectric resonators, IEEE Trans. on Microwave Theory Tech., vol. MTT-47, Dec. 1999, s. 2304-2310.
  • [319] Curtis J.A., Fiedziuszko S.J.: Miniature dual mode microstrip filters, IEEE MTT-S Int. Microwave Symp.Dig., 1991, s. 443-446.
  • [320] Hedges S.J., Jedamzik D., Guglielmi M.: Dual mode HTS microstrip ring resonator filter, ESA/ESTEC Workshop on Space Applications of High Temperature Superconductors, Noordwijk 1994, s. 367-371.
  • [321] Liao C.-K., Chang C.-Y.: Design of microstrip quadruplet filters with source-load coupling, IEEE Trans. on Microwave Theory Tech., vol. MTT-53, July 2005, s. 2304-2308.
  • [322] Fiedziuszko S.J.: Miniature dual-mode dielectric-loaded cavity filter, U.S. Patent 4489293, przyznany 18 grudnia 1984 r.
  • [323] Fiedziuszko S.J., Holme S.C.: Hybrid dielectric resonator/high temperature superconductor filter, European Patent 0 496 512 B1, przyznany 10 kwietnia 1996 r.
  • [324] Libra, www.eesof.tm.agilent.com/about
  • [325] Vogel M., Mayer B.: Rapid Cauer filter design employing new filter model, Electronics Letters, vol. 38, No. 20, Sept. 2002, s. 1167-1168.
  • [326] Mansour R.: Design of superconductive multiplexers using single-mode and dual-mode filters, IEEE Trans. on Microwave Theory Tech., vol., MTT-42, July 1994, s. 1411-1418.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0029-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.