PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metody charakteryzowania niejednorodności rozmieszczenia elementów strukturalnych w materiałach wielofazowych

Identyfikatory
Warianty tytułu
EN
Methods of the arrangement inhomogeneity characterization of the structural elements in multiphase materials
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono najczęściej wykorzystywane w badaniach materiałoznawczych metody ilościowego opisu niejednorodności struktury materiałów wielofazowych. Przeglądu tego dokonano, opierając się na analizie danych literaturowych oraz wynikach badań własnych. Dokonano klasyfikacji najczęściej wyróżnianych sposobów rozmieszczenia cząstek drugiej fazy. Zdefiniowano pojęcia rozmieszczenia doskonale przypadkowego, regularnego i ze skupiskami. Omówiono podstawy oceny rozmieszczenia z wykorzystaniem funkcji kowariancji, metod skaningu systematycznego i analizy wariacyjnej, metod opartych na pomiarze odległości od najbliższego sąsiada, funkcji rozkładu radialnego oraz analizy opartej na koncepcji pól wpływów (tesselacji). Wskazano zakres wykorzystania każdej z omówionych metod. Dokonano porównania opisanych metod z punktu widzenia ich stosowalności w odniesieniu do spotykanych sposobów rozmieszczenia cząstek drugiej fazy. Zaproponowano jednoczesne stosowanie kilku metod opisu w celu obiektywnej identyfikacji typu organizacji struktury. Omówiono, na wybranych przykładach, wpływ rozmieszczenia elementów struktury na właściwości materiałów o złożonej strukturze. Wykazano celowość dalszego rozwijania metod ilościowego opisu niejednorodności struktury materiałów wielofazowych jako narzędzia pozwalającego optymalizować właściwości mechaniczne materiałów.
EN
The paper shows methods (those most often used in materials science) of quantitative description of inhomogeneity ofnthe multiphase materials structure. The review is based on scientific publications and the author's own research. A classifications of most often distinguished second phases spatial patterns was obtained. The definitions of complete spatial randomness, regular spatial patterns and spatial patterns with clusters were analyzed, followed by description of the fundamentals of the inhomogeneity description based on covariance, systematical scanning and variance analysis, nearest neighbor distance, radial distribution function and tesselation methods. The scope of applications of all described methods were presented. A comparison of the considered procedures was obtained from the point of view of second phase spatial patterns characteristic features. Simultaneous use of a few different methods for full identification of a structure organization kind was suggested. Influence of structure elements space distribution on materials properties was described on selected examples. The need to develop methods of quantitative description of multiphase materials inhomogeneity was proven, as a useful tool for optimization of mechanical properties.
Rocznik
Tom
Strony
1--90
Opis fizyczny
Bibliogr. 133 poz., tab., rys., wykr.
Twórcy
  • Wydział Inżynierii Materiałowej, Politechnika Warszawska
Bibliografia
  • 1. K.J. Kurzydłowski, K. Rożniatowski, B. Ralph: Methods for quantifying the microstructure of ceramic matrix composites. British Ceramic Transactions, vol. 95, no. 6, 1996, s. 1-4.
  • 2. K. Rożniatowski, G. Górny: Analiza rozłożenia drugiej fazy na przekroju materiału z wykorzystaniem funkcji kowariancji. Wiadomości Stereologiczne, grudzień 1998, s. 38-43.
  • 3. K.J. Kurzydłowski, J. Bucki, K. Rożniatowski: Quantitative description of the microstructure of ceramic materials. Bulletin of the Polish Academy of the Sciences, vol. 47, no. 4, 1999, s. 353-364.
  • 4. M. Rączka, G, Górny, L. Stobierski, K. Rożniatowski: Effect of carbon content on the microstructure and mechanical properties of silicon carbide based sinters. Proc. of 6th Int. Conf.: Stereology and Image Analysis in Materials Science, Kraków, 20-23. 09.2000, s. 329-336.
  • 5. K. Rożniatowski, G, Górny, M. Rączka: The study of the homogeneity of the silicon carbide microstructure. Proc. of 6th Int. Conf.: Stereology and Image Analysis in Materials Science, Kraków, 20-23.09.2000, s. 359-364.
  • 6. J.J. Bucki, K. Rożniatowski, K.J. Kurzydłowski: Quantitative description of the microstructure of sintered materials. 15th Int. Plansee Seminar, red. G. Kneringer, P. Rodhammer, H. Wildner, Plansee Holding AG, Reutte, vol. 3, 2001, s. 147-160.
  • 7. M. Rączka, G. Górny, L. Stobierski, K. Rożniatowski: Effect of carbon content on the microstructure and properties of silicon carbide-based sinters. Materials Characterization, 46, 2001, s. 245-249.
  • 8. T. Wejrzanowski, K. Rożniatowski, K.J. Kurzydłowski: Computer aided description of the materials microstructure analysis of homogeneity of the spatial distribution of particles. Image Analysis and Stereology, 20 (Suppl. 1), 2001, s. 71-76.
  • 9. K. Rożniatowski, T. Wejrzanowski, G. Górny, M. Rączka: Description of the homogeneity of materials microstructure using the computer aided analysis. Proc. of 9th European Congress on Stereology and Image Analysis, edited by J. Chrapoński, J. Cwajna, L. Wojnar, Zakopane, Poland 10-13 May, 2005, s. 400-406.
  • 10. D. Pawlak, K. Kołodziejak, S. Turczynski, J. Kisielewski, K. Rożniatowski, R. Diduszko, M. Kaczkan, M. Malinowski: Self-organized, rodlike, micrometer scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic. Chemistry of Materials, vol. 18, 2006, s. 2450-2457.
  • 11. K, Rożniatowski, B. Ralph, K.J. Kurzydłowski: Quantification of the size, shape and arrangements of particles for the development of modern materials, in Foundation of Materials Design. Research Signpost, 2006, s. 175-194.
  • 12. M.W. Grabski, J.A. Kozubowski: Inżynieria materiałowa. Geneza, status, perspektywy. Oficyna Wyd. Politechniki Warszawskiej, Warszawa 2003.
  • 13. S.A. Saltykov: Stereometric metallography. State Publishing House for Metals Sciences, Moscow, 1945.
  • 14. J. Ryś: Stereologia materiałów. Fotobit Design, 1995, s. 281-284.
  • 15. K.J. Kurzydłowski, B. Ralph: The quantitative description of the microstructure of materials. CRC Press, Boca Raton, 1995.
  • 16. E.E. Underwood: Quantitative stereology. Addison-Wesley, Reading, USA, 1970.
  • 17. J.C. Russ, R.T. DeHoff: Practical stereology. Plenum Press, New York, 2000.
  • 18. M. Coster, J.L. Chermant: Precis d'analyse d'images. Presses du CNRS, Paris, 1989.
  • 19. L. Wojnar, K.J. Kurzydłowski, J. Szala: Praktyka analizy obrazu. Polskie Towarzystwo Stereologiczne, Kraków, 2002.
  • 20. H. Schwarz, H.E. Exner: The characterization of the arrangement of feature centroids in planes and volumes. J. Microsc., 129, 1983, s. 155-169.
  • 21. M. Geni, M. Kikuchi: Damage analysis of aluminium matrix composite considering non-uniform distribution of SiC particles. Acta Mater., vol. 46, No 9, 1998, s. 3125-3133.
  • 22. J.P. Anson, J.E. Gruzleski: The quantitative discrimination between shrinkage and gas microporosity in cast aluminum alloys using spatial data analysis. Mater. Charact., 43, 1999, s. 319-335.
  • 23. G.F. Vander Voort: Computer-aided microstructural analysis of specialty steels. Mater. Charact., 27, 1991, s. 241-260.
  • 24. J.B. Parse, J.A. Wert: A geometrical description of particle distributions in materials. Modell. Simul. Mater. Sci. Eng., 1, 1993, s. 275-296.
  • 25. W.A. Spitzig, J.F. Kelly, O. Richmond: Quantitative characterization of second-phase populations. Metallography, 18, 1985, s. 235-261.
  • 26. K.J. Kurzydłowski, J. Bystrzycki, T. Czujko: Applications of cluster analysis in the quantitative estimation of similarities in geometrical characteristics of grains in polycrystalline materials. Mater. Charact., 32, 1994, s. 105-118.
  • 27. J. Zhang, M.A. Przystupa, A.J. Luevano: Characterization of pore and constituent particle populations in 7050-T7451 aluminum plate alloys. Metall. Trans., 29A, 1998, s. 727-737.
  • 28. A. Tewari, M. Dighe, A.M. Gokhale: Quantitative characterization of spatial arrangement of micropores in cast microstructures. Mater. Charact., 40, 1998, s. 119-132.
  • 29. N.A.C. Cressie: Statistics for spatial data. John Wiley & Sons Inc., Toronto, 1991, s. 577-618.
  • 30. W. Mendenhall, R.J. Beaver: Introduction to probability and statistics. PWS-Kent Publishing Company, Boston, 1991.
  • 31. M. Cans, H. Hougardy: Quantitative description of the distribution of non-metallic inclusions in steels on a basis of statistical calculations instead of standards. Acta Stereol. 5, 1986, s. 281.
  • 32. M.T. Shehata, J.D. Boyd: Inclusions and Their Influence on Material Behaviour. R. Rungta (red.), American Society for Metals, Metals Park, OH, 1988, s. 123.
  • 33. T. Weiss: Homogeneity of dispersed phases. Pract. Metallog., 24, 1987, s. 503-513.
  • 34. K. Wiencek, H. Hougardy: Description of the homogeneity of particle arrangement. Acta Stereol., 16, 1987, s. 69-74.
  • 35. N. Dolić, A. Markotić, F. Unkić: Structural Homogeneity of Direct-Chill Cast Ingots of Aluminum Alloy EN AW-5083. Metallurgical And Materials Transactions B, vol. 38B, 2007, s. 491-495.
  • 36. L. Kaufman, P.J. Rousseeuw: Finding groups in data. An introduction to cluster analysis. Wiley, New York, 1990.
  • 37. I. Saxl, K. Pelikan, J. Rataj, M. Besterci: Quantification and modelling of heterogeneous systems. Cambridge International Science Publishing, Cambridge, United Kingdom, 1995.
  • 38. W.A. Spitzig, J.F. Kelly, O. Richmond: Quantitative characterization of second phase populations. Metallography, 18, 1985, s. 235-261.
  • 39. A. Tewari, A.M. Gokhale: Nearest-neighbor distances between particles of finite size in three-dimensional uniform random microstructures, Materials Science and Engineering A, vol. 385, 2004, s. 332-341.
  • 40. P. Ctibor, R. Lechnerová, V. Beneš: Quantitative analysis of pores of two types in a plasma-sprayed coating. Mater. Charact., vol. 56, 2006, s. 297-304.
  • 41. J. Kanga, D.S. Wilkinson, D.V. Malakhov, H. Halim, M. Jain, J.D. Embury, R.K. Mishra: Effect of processing route on the spatial distributions of constituent particles and their role in the fracture process in AA5754 alloy sheet materials. Materials Science and Engineering A, vol. 456, 2007, s. 85-92.
  • 42. A. Tewari, A.M. Gokhale: Nearest neighbor distances in uniform-random poly-dispersed microstructures. Materials Science and Engineering A, vol. 396, 2005, s. 22-21.
  • 43. A. Tewari, A.M. Gokhale: Nearest-neighbor distributions in thin films, sheets, and plates. Acta Materialia, vol. 54, 2006, s. 1957-1963.
  • 44. J. Zhang, M. Przystupa, A.J. Luevano: Characterizations of Pore and Constituent Particle Populations in 7050-T7451 Aluminum Plate Alloys. Metallurgical and Materials Transactions A, vol. 29A, 1998, s. 727-737.
  • 45. V.V. Silberschmidt: Effcct of micro-randomness on macroscopic propertics and fracture of laminates. J. Mater. Sci., vol. 41, 2006, s. 6768-6776.
  • 46. J. Wan, Y. Li, Y. Liu: Spatial distribution of pores in lotus-type porous metal. J. Mater. Sci., vol. 42, 2007, s. 6446-6452.
  • 47. J.J. Lewandowski, C. Liu, W.H. Hunt: Effects of matrix microstructure and particle distribution on fracture of an Al MMC. Mater. Science Eng. A, vol. 107, 1989, s. 241-255.
  • 48. S.N. Chiu: Mean-value formulae for the neighborhood of the typical cell of a random tessellation. Adv. Appl. Prob., 26, 1994, s. 565-576.
  • 49. P.J. Wray, O. Richmond, H. Morrison: Use of the Dirichlet tessellation for characterizing and modeling non-regular dispersions of second phase particles. Metallography, 16, 1983, s. 39-58.
  • 50. A. Okabe, B. Boots, K. Sugihara: Spatial tesselations: concepts and applicalions of Voronoi diagrams. Wiley, New York, 1992.
  • 51. M. Brinkmann, S. Pratontep, C. Contal: Correlated and non-correlated growth kinetics of pentacene in the sub-monolayer regime. Surface Science, vol. 600, 2006, s. 4712-4716.
  • 52. R.K. Everett, J.H. Chu: Modeling of non-uniform composite microstructure. J. Comp. Mater., 27, 1993, s. 1129-1144.
  • 53. M. Bertram, H. Wendrock: Characterization of planar local arrangement by means of the Delaunay neighbourhood. J. Microsc., 181, 1996, s. 45-53.
  • 54. S. Ghosh, Z. Nowak, K. Lee: Quantitative characterization and modeling of composite microstructures by Voronoi cells. Acta Mater., 45, 1997, s. 2215-2234.
  • 55. S. Kumar, S.K. Kurtz: Properties of a two-dimensional Poisson-Voronoi tessellation: a Monte-Carlo study. Mater. Charact., 31, 1993, s. 55-68.
  • 56. A. Al-Ostaz, A. Diwakar, K.I. Alzebdeh: Statistical model for characterizing random microstructure of inclusion-matrix composites, J. Mater. Sci., vol. 42, 2007, s. 7016-7030.
  • 57. P. Louis, A.M. Gokhale: Application of image analysis tor characterisation of spatial arrangement of features in microstructure. Metall. Mater. Trans. A Phys. Metall, 26, 1995, s. 1449-1455.
  • 58. J.P. Myles, E.C. Flenley, N.R.J. Fieller, H.V. Atkinson, H. Jones: Statistical tests for chistering of second phases in composite materials. Phil. Mag., 72, 1995, s. 515-528.
  • 59. R. Pyrz: Quantitative description of the microstructure of composites. Part I: Morphology of unidirectional composite systems. Compos. Sci. Tech., 50, 1995, s. 197-208.
  • 60. K. Lochmann, L. Oger, D. Stoyan: Statistical analysis of random sphere packings with variable radius distribution. Solid State Sciences, vol. 8, 2006, s. 1397-1413.
  • 61. K. Lochmann, A. Anikeenko, A. Elsner, N. Medvedev, D. Stoyan: Statistical verification of crystallization in hard sphere packings under densification. Eur. Phys. J. B, vol. 53, 2006, s. 67-76.
  • 62. A.M. Gokhale, A. Tewari, H. Garmestani: Constraints on microstructural two-point correlation functions. Scripta Materialia, vol. 53, 2005, s. 989-993.
  • 63. F. Ballani, D.J. Daley, D. Stoyan: Modelling the microstructure of concrete with spherical grains. Computational Materials Science, vol. 35, 2006, s. 399-407.
  • 64. P. Danwanichakul, E.D. Glandt: Sequential quenching of randomly deposited ellipsoids: Anisotropy and spatial patterns. J. of Colloid and Interface Science, vol. 309, 2007, s. 384-391.
  • 65. P.K. Hung, L.T. Vinh: Local microstructure of liquid and amorphous Al2O3. J. of Non-Crystalline Solids, vol. 352, 2006, s. 5531-5540.
  • 66. J.E. Spowart, B. Maruyama, D.B. Miracle: Multi-scale characterization of spatially heterogeneous systems: implications for discontinuously reinforced metal-matrix composite microstructures. Mater. Science. Eng. A, vol. 307, 2001, s. 51-66.
  • 67. H. Kumar, C.L. Briant, W.A. Curtin: Using microstructure reconstruction to model mechanical behavior in complex microstructures. Mechanics of Materials, vol. 38, 2006, s. 818-832.
  • 68. A. Tewari, A.M. Gokhale: Computations of contact distributions for representation of microstructural spatial clustering. Computational Materials Science, vol. 38, 2006, s. 75-82.
  • 69. O. Schabenberger, C.A. Gotway: Statistical Methods for Spatial Data Analysis. Chapman & Hall/CRC, Boca Raton 2005.
  • 70. P.A. Karnezis, G. Durrant, B. Cantor: Characterization of Reinforcement Distribution in Cast Al-Alloy/SiCp Composites. Mater. Charact., 40, 1998, s. 97-109.
  • 71. A. Olszówka-Myalska, J. Szala, J. Cwajna: Characterization of reinforcement distribution in Al/Al2O3)p composites obtained from composite powder. Mater. Charact., 46, 2001, s. 189-195.
  • 72. Ch. Wu, W. Xu: Atomistic molecular simulalions of structure and dynamics of crosslinked epoxy resin. Polymer, vol. 48, 2007, s. 5802-5812.
  • 73. Y. Zhao, X. Bian, X. Qin, J. Qin, X. Hou: Structural properties and evolution in the solidification process of Cu-Ag alloys. J. of Non-Crystalline Solids, vol. 53, 2007, s. 1177-1187.
  • 74. M. Karolus, E. Łągiewka: Structure studies of Fe81Nb5B14 annealed alloys by Rietveld refinement. J. of Alloys and Compounds, vol. 423, 2006, s. 92-95.
  • 75. Q. Brulin, N. Ning, H. Vach: Hydrogen-induced crystallization of amorphous silicon clusters in a plasma reactor. J. of Non-Crystalline Solids, vol. 352, 2006, s. 1055-1058.
  • 76. T. Arzhanowa, A. Golikov: Spatial distribution of copper nuclei electrodeposited on glassy carbon under galvanostatic conditions. Corrosion Science, vol. 47, 2005, s. 723-734.
  • 77. S. Torquato: Morphology and effective properties of disordered heterogeneous media. Int. J. Solids Structures, vol. 35, no. 19, 1998, s. 2385-2406.
  • 78. A. Rogers: Statistical analysis of spatial dispersions. Pion, Ltd. and Methuen, London, 1974.
  • 79. J. Cwajna: Ilościowy opis struktury stopów narzędziowych i jego zastosowanie. Zesz. Nauk. Politechniki Śląskiej, nr 1105, z. 39, 1991.
  • 80. K. Gawdzińska, M. Maliński: Study of reinforcement elements disiribution exemplified by composite with AlSi11 matrix and carbon reinforcement. Metalurgija, 44, 2005, s. 45-48.
  • 81. J.T. Curtis, R.P. McIntosh: The interrelations of certain analytic and synthetic phytosociological characters. Ecology, 31, 1950, s. 434-455.
  • 82. P.J. Diggle: Statistical analysis of spatial point patterns. Academic Press, Toronto, 1983, s. 16-33.
  • 83. M.F. Horstemeyer, A.M. Gokhale: A void-crack nucleation model for ductile material. Int. J. Solids Struct., 36, 1999, s. 5029-5055.
  • 84. P. Louis, A.M. Gokhale: Computer simulation of spatial arrangement and connectivity of particles in 3D microstructure: application to model electrical conductivity of a polymer matrix composite. Acta Mater., 44, 1996, s. 1519-1528.
  • 85. K. Marthinsen, J.M. Fridy, T.N. Rouns, K.B. Lippert, E. Nes: Characterization of 3-D particle distributions and effects on recrystallization kinetics and microstructure. Scripta Mater., 39, 1998, s. 1177-1184.
  • 86. R.M. German: Particle packing characteristics, Metal Powder Industries Federation, Princeton (NJ), 1989.
  • 87. R.T. DeHoff: A geometrically general theory of particle coarsening. Acta Metal., 39, 1991, s. 976-982.
  • 88. V.V. Bhanu Prasad, B.Y.R. Bhat, P. Ramakrishnan, Y.R. Mahajan: Clustering probability maps for private metal matrix composites. Scripta Mater., 43, 2000, s. 835-840.
  • 89. A. Tewari, A.M. Gokhale, R.M. German: Effect of gravity on three-dimensional coordination number distribution in liquid phase sintered microstructures. Acta Mater., 47, 1999, s. 3721-3734.
  • 90. D. Stoyan, W.S. Kendall, J. Mecke: Stochastic geometry and its applications. Wiley, Chichester, 1996.
  • 91. S. Chandrasekhar: Stochastic problems in physics and astronomy. Rev. Mod. Phys., 15, 1943, s. 1-89.
  • 92. B. Balasundaram, A.M. Gokhale: Quantitative characterization of spatial arrangement of shrinkage and gas (air) pores in cast magnesium alloys. Mater. Charact., 46, 2001, s. 419-426.
  • 93. S. Yang, A. Tewari, A.M. Gokhale: Modelling of non-uniform spatial arrangement of fibers in a ceramic matrix composite. Acta Mater., 45, 1997, s. 3059-3069.
  • 94. K. Donnelly: Simulations to determine the variance and edge effect of total nearest-neighbour distance. In: Simulation Studies in Archaeology. I. Hodder (red.), Cambridge University Press, London, 1978, s. 91-95.
  • 95. A.J. Baddeley, B.W. Silverman: A cautionary example on the use of second-order methods for analyzing point patterns. Biometrics, 40, 1984, s. 1089-1093.
  • 96. J.D. Scalon, N.R.J. Fieller, E.C. Stillman, H.V. Atkinson: Spatial pattern analysis of second-phase particles in composite materials. Materials Science and Engineering, A356, 2003, s. 245-257.
  • 97. B.D. Ripley: Modelling spatial patterns, J. Royal Statist. Soc., B39, 1977, s. 172-212.
  • 98. N. Cressie: Statistics for spatial data. Wiley and Sons, New York, 1993.
  • 99. K.H. Hanisch, D. Stoyan: Stereological estimation of the radial distribution function of centres of spheres, J. Microsc., 122, 1981, s. 131-141.
  • 100. S.C. Petts: Characterisation of spatial dispersions. Part II Thesis, University of Oxford, Oxford, UK, 1991.
  • 101. Z. Gácsi, J. Kovács. T. Pieczonka: Particle arrangement characterization by the pair correlation function. Powder Metallurgy Progress, vol. 3. no. 1, 2003, s. 30-39.
  • 102. A. Mirante, N. Weingarten: The radial sweep algorithm for constructing triangulate irregular networks. IEEE Computer Graphics and Applications, 2. 1982, s. 11-21.
  • 103. B.A. Lewis, J.S. Robinson: Triangulation of planar regions with applications. Computer J., 21. 1978, s. 324-332.
  • 104. D.T.R. Lee, B.J. Schachter: Two algorithm for constructing a Delaunay triangulation. Int. J. of Computer and Information Science, 9, 1980, s. 219-242.
  • 105. M.J. McCullagh, C.G. Ross: Delaunay triangulation of a random data set for isarithmic mapping. Cartographic J., 17, 1980, s. 93-99.
  • 106. L.D. Floriani; B.C. Falcidieno, G.N. Pienovi: A hierarchical structure for surface approximation. Computer and Graphics, 8, 1984, s. 475-484.
  • 107. D.F. Watson; Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes. Computer J., 24, 1981, s. 167-172.
  • 108. M.G. Voronoi: Nouvelles applications des parametres continus a la theorie des formes quadratiques, J. Reine und Angewandte Mathematik, 134, 1908, s. 198-287.
  • 109. G.L. Dirichlet: Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. J. für die Reine und angewandte Mathematik, 40, 1850, s. 209-227.
  • 110. A.J. Thiessen, J.C. Alter: Precipitation averages for large areas. Monthly Weather Review, 39, 1911, s. 1082-1084.
  • 111. E. Wigner, F. Seitz: On the constitution of metallic sodium. Phys. Rev., 43, 1933, s. 804-810.
  • 112. H. Blum: Influence of pressure on the electron spin resonance of hydrogen atoms in CaF2. Phys. Rev., 161, 1967, s. 213-219.
  • 113. M.J.G.W. Heijman, N.E. Benes, J.E. Elshof, H. Verweij: Quantitative analysis of the microstructural homogeneity of zirconia-toughened alumina composites. Materials Research Bulletin, 37, 2002, s. 141-149.
  • 114. M. Besterci, L. Kovac: Microstructure and properties of Cu-Al2O3 composites prepared by powder metallurgy. Int. J. of Materials & Product Technology, vol. 18, no. 1/2/3, 2003, s. 26-56.
  • 115. S. Ghosh, Z. Nowak, W. Lee: Tessellation-based computational methods for the characterization and analysis of heterogeneous microstructures. Composite Science and Technology, 57, 1997, s. 1187-1210.
  • 116. D.J. Lloyd: Aspects of particle fracture in particulate reinforced MMCs. Acta Metall. Mater., 39, 1991, s. 59-72.
  • 117. J. Llorca, C. Gonzalez: Microstructural factors controlling the strength and ductility of particle reinforced metal matrix composites. J. Mech. Phys. Solids, 46(1), 1998, s. 1-28.
  • 118. M. Geni, M. Kikuchi: Damage analysis of aluminum matrix composite considering non-uniform distribution of SiC particles. Acta Mater., 46(9), 1998, s. 3125-3133.
  • 119. M. Kikuchi, M. Geni: Evaluation of the interaction effects of SiC particles during damage process of MMCs. Key Eng. Mater., 145-149, 1998, s. 895-900.
  • 120. H. Berns, A. Melander, D. Weichert, N. Asnafi, C. Broeckmann, A. Gross-Weege: A new material for cold forging tool. Comp. Mater. Sci., 11, 1998, s. 166-80.
  • 121. L. Mishnaevsky Jr., N. Lippmann, S. Schmauder: Computational modeling of crack propagation in real microstructures of steels and virtual testing of artificially designed materials. Int. J. Fracture, 120(4), 2003, s. 581-600.
  • 122. L. Mishnaevsky Jr., N. Lippmann, S. Schmauder, P. Gumbsch: In situ observations of damage evolution and fracture in AlSi cast alloys. Eng. Fract. Mech., 63(4), 1999, s. 395-411.
  • 123. L. Mishnaevsky Jr., U. Weber, N. Lippmann, S. Schmauder: Computational experiment in the mechanics of materials. In: M. Cross, J. W. Evans, C. Bailey (red.): Computational Modeling of Materials, Minerals and Metals Processing. Proc. TMS Conf., 2001, s. 673-680.
  • 124. J. Segurado, C. Gonzalez, J. Llorca: A numerical investigation of the effect of particle clustering on the mechanical properties of composites. Acta Mater., 51, 2003, s. 2355-2369.
  • 125. J. Le'Pinoux, Y. Estrin: Mechanical behaviour of alloys containing heterogeneously distributed particles: modelling with Delaunay triangulation. Acta Mater., 48, 2000, s. 4337-4347.
  • 126. Y. Estrin, S. Arndt, M. Heilmaier, Y. Brechet: Deformation behaviour of particle-strengthened alloys: a Voronoi mesh approach. Acta Mater., vol. 47, no. 2, 1999, s. 595-606.
  • 127. L. Mishnaevsky Jr., K. Derrien, D. Baptiste: Effect of microstructure of particle reinforced composites on the damage evolution: probabilistic and numerical analysis. Composites Science and Technology, 64, 2004, s. 1805-1818.
  • 128. J. Summerscales, D. Green, F.J. Guild: Effect of processing dwell-time on the microstructure of a fibre reinforced composite. J. Microsc., 169, 1993, s. 173-182.
  • 129. P.D. Wu, H. Jin, Y. Shi, D.J. Lloyd: Analysis of ridging in ferritic stainless steel sheet. Materials Science and Engineering A, vol. 423, 2006, s. 300-305.
  • 130. R. Hrach, D. Nowotny, S. Novak, J. Pavlik: Morphological study of discontinuous and semicontinuous metal films. Vacuum, vol. 50, no. 1-2, 1998, s. 175-178.
  • 131. J. Ryś, K. Wiencek: Statystyczny opis rozmieszczenia ziarn w polikryształach. Rudy i Metale Nieżelazne, R. 49, nr 6, 2004, s. 282-286.
  • 132. J. Chmiela, D. Słota, J. Szala: Fractal Analysis of Dispersion Particles Distribution Inhomogeneity in Model Spatial Structures and their Sections. Proc. of 9th European Congress on Stereology and Image Analysis, edited by J. Chrapoński, J. Cwajna, L. Wojnar, Zakopane, Poland, 10-13 May, 2005, s. 383-392.
  • 133. J. Chmiela, D. Słota, J. Szala: Analysis of Lacunarity Based an Optimal Set Covering and the Gliding - Box Method. Proc. of 9th European Congress on Stereology and Image Analysis, edited by J. Chrapoński, J. Cwajna. L. Wojnar, Zakopane. Poland, 10-13 May, 2005, s. 383-392.
  • SPIS PUBLIKACJI Z UDZIAŁEM AUTORA ZWIĄZANYCH Z TEMATYKĄ ROZPRAWY
  • 1. K.J. Kurzydłowski, K. Rożniatowski, B. Ralph: Methods for quantifying the microstructure of ceramic matrix composites. British Ceramic Transactions, vol. 95, no. 6, 1996, s. 1-4.
  • 2. K. Rożniatowski, G. Górny: Analiza rozłożenia drugiej fazy na przekroju materiału z wykorzystaniem funkcji kowariancji. Wiadomości Stereologiczne, grudzień 1998, s, 38-43.
  • 3. K.J. Kurzydłowski, J. Bucki, K. Rożniatowski: Quantitative description of the microstructure of ceramic materials. Bulletin of the Polish Academy of the Sciences, vol. 47, no. 4, 1999, s. 353-364.
  • 4. M. Rączka, G. Górny, L. Stobierski, K. Rożniatowski: Effect of carbon content on the microstructure and mechanical properties of silicon carbide based sinters. Proceedings of 6th Int. Conf.: Stereology and Image Analysis in Materials Science, Kraków, 20-23.09.2000, s. 329-336.
  • 5. K. Rożniatowski, G. Górny, M. Rączka: The study of the homogeneity of the silicon carbide microstructure. Proceedings of 6th Int. Conf.: Stereology and Image Analysis in Materials Science, Kraków, 20-23.09.2000, s. 359-364.
  • 6. J.J. Bucki, K. Rożniatowski, K.J. Kurzydłowski: Quantitative description of the microstructure of sintered materials. 15th Int. Plansee Seminar, Eds. G. Kneringer, P. Rodhammer, H. Wildner. Plansee Holding AG, Reutte, vol. 3, 2001, s. 147-160.
  • 7. M. Rączka, G. Górny, L. Stobierski, K. Rożniatowski: Effect of carbon content on the microstructure and properties of silicon carbide-based sinters. Materials Characterization, 46, 2001, s. 245-249.
  • 8. T. Wejrzanowski, K. Rożniatowski, K.J. Kurzydłowski: Computer aided description of the materials microstructure analysis of homogeneity of the spatial distribution of particles. Image Analysis and Stereology, 20 (Suppl. 1), 2001, s. 71-76.
  • 9. K. Rożniatowski, T. Wejrzanowski, G. Górny, M. Rączka: Description of the homogeneity of materials microstructure using the computer aided analysis. Proceedings of 9th European Congress on Stereology and Image Analysis, edited by J. Chrapoński, J. Cwajna, L. Wojnar, Zakopane, 10-13 May, 2005, s. 400-406.
  • 10. D. Pawlak, K. Kołodziejak, S. Turczynski, J. Kisielewski, K. Rożniatowski, R. Diduszko, M. Kaczkan, M. Malinowski: Self-organized, rodlike, micrometer scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic. Chemistry of Materials, vol. 18, 2006, s. 2450-2457.
  • 11. K. Rożniatowski, B. Ralph, K.J. Kurzydłowski: Quantification of the size, shape and arrangements of particles for the development of modern materials, in Foundation of Materials Design. Researeh Signpost, 2006, s. 175-194.
  • 12. T. Wejrzanowski, W.L. Spychalski, K. Rożniatowski, K.J. Kurzydłowski: Image based analysis of complex microstructures of engineering materials. Int. J. Appl. Math. Comput. Sci., vol. 18, No 1, 2008, s. 33-39.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0029-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.