PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Mikrostrukturalne uwarunkowania właściwości mechanicznych nanokrystalicznych metali

Autorzy
Identyfikatory
Warianty tytułu
EN
Microstructural factors affecting mechanical properties of nanocrystalline metals
Języki publikacji
PL
Abstrakty
PL
W pracy scharakteryzowano właściwości mechaniczne materiałów nanokrystalicznych (MNK). Charakterystyki tej dokonano na podstawie analizy danych literaturowych oraz wyników badań własnych autora. Przeprowadzono analizę definicji tej grupy materiałów. Zaproponowano użycie dominującego mechnizmu odkształcenia jako kryterium podziału na charakterystyczne podgrupy oraz dokonano podziału na podgrupy. Zanalizowano charakterystyczne wymiary i odległości w strukturze materiałów z uwzględnieniem ich wpływu na właściwości mechaniczne. Dokonano krótkiego przeglądu metod wytwrzania nanokrystalicznych metali, z uwzględnieniem charakterystycznych cech mikrostruktury i właściowści tych materiałów wytwarzanych różnymi metodami. Opisano podstawowe mechanizmy odkształcenia, uwzględniając specyfikę ich działania w nanokrystalicznych metalach. Omówiono wpływ nanostruktury na takie właściwości mechaniczne MNK, jak moduł sprężystości, ciągliwość, naprężenie uplastyczniające, wytrzymałość na rozciąganie i ściskanie, odporność na pękanie oraz wytrzymałość zmęczeniowa. Zaproponowano sposoby modyfikacji struktury MNK mające na celu podwyższenie ich wytrzymałości, ciągliwości oraz odporności na pękanie. Do najbardziej obiecujących metod zaliczono: modyfikację struktury granic ziaren poprzez domieszkowanie materiału lub duże odkształcenie plastyczne i obróbkę cieplną; tworzenie struktur hybrydowych; zwiększanie zdolności materiałów do generacji dyslokacji i do bliźniakowania mechanicznego poprzez takie ich domieszkowanie, które spowoduje obniżenie niestabilnej energii błędu ułożenia i niestabilnej energii bliźniakowania. Opisano praktyczne znaczenie właściowści mechanicznych MNK i przedstawiono prognozy zastosowań tych materiałów na elementy miniaturowych urządzeń elektromechanicznych (MEMS), na silnie obciążone elementy większych konstrukcji oraz jako warstw wierzchnich w urzadzeniach pracujących w warunakch dużych obciążeń mechanicznych.
EN
The paper delas with mechanical properties of nanocrystalline materials (MNK) with special consideration of bulk nanocrystalline metals. The study is based on literature reports and the author's own experiments. The definition of MNK was analyzed. It was suggested to use the dominating deformation mechanisms as a criterion of materials classification and a division into subgroups was made. Characteristic microstructure sizes and distances in the structure of material with consideration of their influence on mechnical properties were analyzed. A short review of methods of MNK processing was presented. Characteristic features of microstructure and properties of the materials produced with various methods were shown. Fundamental deformation mechanisms were described with special attention to characteristic features of MNK deformation. Influence of nanostructure on mechanical properties was described, i.e. on modulus od elesticity, ductility, yield stress, tensile and compression strenght, fracture toughness and fatigue strenght. Methods of structure modification to achieve improvement the most promissing methods: modification of grain boundaries structure by means of materials alloying or by severe plastic deformation connected with heat treatment of the materials; productions of hybrid microstructures; improvement of the materials' ability of dislocations emission and mechanical twinning by alloying causing so that unstable stacking fault energy and unstable twinning energy decreases. Practical impact of the mechanical properties of MNK was described and applications of the materials for Microelectromechnical Systems (MEMS), reliable elements of bigger structures and surface layer of devices working under heavy loads were suggested.
Rocznik
Tom
Strony
1--132
Opis fizyczny
Bibliogr. 649 poz., tab., rys., wykr.
Twórcy
autor
  • Wydział Inżynierii Materiałowej, Politechnika Warszawska
Bibliografia
  • 1. C.C. Koch (red.), Nanostructured Materials, Processing, Properties and Potential Applications, Noyes Publications, Wiliam Andrew Publishing, New York, 2002.
  • 2. S.C. Tjong, H. Chen, Nanocrystalline materials and coatings. Mater. Sci. Engn. R., v. R45(2004), s. 1-88.
  • 3. H. Gleiter, Nanostructured materials: basic concepts and micro structure. Acta Mater., v. 48(2000), s. 1-29.
  • 4. R.W. Siegel, E. Hu, M.C. Roco (red.). Nanostructure Science and Technology: R&D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices, WTEC, Loyola College in Maryland, Baltimore, 1999.
  • 5. S.P. Baker, Plastic deformation and strength of materials in small dimensions. Mater. Sci. Engn. A, v. 319-321(2001), s. 16-23.
  • 6. D.G. Morris, Mechanical Behaviour of Nanostructured Materials, Trans Tech Publications, Zurich, 1998.
  • 7. H. Van Swygenhoven, A. Caro, Plastic behavior of nanophase metals studied by molecular dynamics, Phys. Rev. B, v. 58(1998), s. 11246-11251.
  • 8. J. Schiotz, F.D. Di Tolla, K.W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes, Nature, 391(1998), s. 561-63.
  • 9. Y. Yamakov, D. Wolf, S.R. Philpol, A.K. Mukherjee, H. Gleiter, Deformation mechanism map for nanocrystalline metals by molecular-dynamics simulation, Nature Mater., v. 3(2004), s. 43-47.
  • 10. G.-P. Zheng, M. Li, Crystal instability in nanocrystalline materials, Acta Mater., v. 55(2007), s. 5464-5472.
  • 11. K.S. Kumar, H. Van Swygenhoven, S. Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Mater., v. 51(2003), s. 5743-5774.
  • 12. M. Ke, S.A. Hackney, W.W. Milligan, E.C. Aifantis, Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films, Nanostruct. Mater., v. 5(1995), s. 689-697.
  • 13. C.J. Youngdahl, J.R. Weertman, R.C. Hugo, H.H. Kung, Deformation behavior in nanocrystalline copper, Scripta Mater., v. 44 (2001), s. 1475-1478.
  • 14. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, P. Wang, Deformation of electrode posited nanocrystalline nickel, Acta Mater., v. 51(2003), s. 387-495.
  • 15. R.C. Hugo, H. Kung, J.R. Weertman, R. Mitra, J.A. Knapp, D.M. Follstaedt, In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films, Acta Mater., v. 51(2003), s. 1937-1943.
  • 16. X.-L. Wu, E. Ma, Dislocations in nanocrystalline grains, Appl. Phys. Lett., v. 88(2006), s. 231911-1-231911-3.
  • 17. Z.W. Shan, J.M.K. Wiczorek, E.A. Stach, D.M. Follstaedt. J.A. Knapp. S.X. Mao, Dislocation Dynamics in Nanocrystalline Nickel, Phys. Rev. Lett., v. 98(2007), s. 095502-1-095502-4.
  • 18. R.J. Asaro, P. Krysl, B. Kad, Deformation mechanism transitions in nanoscale fcc metals, Phil. Mag. Letters, v. 83(2003), s. 733-743
  • 19. B. Zhu, R.J. Asaro, P. Krysl, R. Bailey, Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals, Acta Mater., v. 53(2005), s. 4825-4838.
  • 20. B. Zhu, R.J. Asaro, P. Krysl, K. Zhang, J.R. Weertman, Effects of grain size distribution on the mechanical response of nanocrystalline metals: Part II, Acta Mater., v. 54(2006), s. 3307-3320.
  • 21. W. Qin, Y.W. Du, Z.H.Chen, W.L. Gao, Dislocation stability and configuration in the crystallites of nanocrystalline materials, J. Alloys and Compounds, v. 337(2002). s. 168-171.
  • 22. W. Qin, J.A. Szpunar, Origin of lattice strain in nanocrystalline materials, Phil. Mag. Lett., v. 85(2005), s. 649-656.
  • 23. Z. Budrovic, H. Van Swygenhoven, P.M. Derlet, S. Van Petegem, B. Schmitt, Plastic Deformation with Reversible Peak Broadening in Nanocrystalline Nickel, Science, v. 304(2004), s. 273-276.
  • 24. S. Cheng, J.A. Spencer, W.W. Milligan, Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals, Acta Mater., v. 51(2003), s. 4505-4518.
  • 25. M.A. Haque, M.T.A. Saif, Strain gradient effect in nanoscale thin films, Acta Mater., v. 51(2003), s. 3053-61.
  • 26. M.A. Meyers, A. Mishra, D.J. Hosson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci., v. 51(2006), s. 427-556.
  • 27. M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, E. Ma, Toward a quantitative understanding of mechanical behavior of nanocrystalline metals, Acta Mater., v. 55(2007), s. 4041-4065.
  • 28. E.O. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proc. Phys. Soc. B, v. 64(1951), s. 747-753.
  • 29. N.J. Petch, The cleavage strength of polycrystals, J. of the Iron and Steel Institute,v. 174(1953), s. 25-28.
  • 30. R.W. Armstrong, I. Codd. R.M. Douthwaite, N.J. Petch, The plastic deformation of polycrystalline aggregates, Phil. Mag., v. 7(1962), s. 45-58.
  • 31. K.J. Kurzydłowski, Geometryczne aspekty odkształcenia plastycznego polikryształów o sieci regularnej, Prace Naukowe Politechniki Warszawskiej, Mechanika, z. 130, 1989.
  • 32. K.J. Kurzydłowski, J.J. Bucki, Flow stress dependence on the distribution of grain size in polycrystals, Acta Metall. Mater., v. 41(1993), s. 3141-3146.
  • 33. J.W. Wyrzykowski, Wpływ właściwości granic ziaren na granicę plastyczności metali, Prace Naukowe Politechniki Warszawskiej, Mechanika, z. 105, 1987.
  • 34. J.W. Wyrzykowski, M.W. Grabski, Hall-Petch Relation in Aluminium and its Dependence on the Grain Boundary Structure, Phil. Mag. A, v. 53(1986), s. 505-520.
  • 35. L.S. Darken, Some Observations on Atoms and Imperfections, Trans. Am. Sac. Metals, v. 54(1961), s. 600-642.
  • 36. J.D. Campbell, K.J. Marsh. The effect of grain size on the delayed yielding of mild steel, Phil. Mag., v. 7(1962), s. 933-952.
  • 37. R.W. Armstrong, The Yield and Flow Stress Dependence on Polycrystal Grain Size, in: T.N. Baker (red), Yield, Flow and Fracture of Polycrystals, Applied Science Publishers LTD, 1983, s. 1-31.
  • 38. N. Hansen, Effect of Grain Size and Strain on the Tensile Flow Stress of Aluminium at Room Temperature, Acta Metall., v. 25(1977), s. 863-869.
  • 39. A.H. Chokshi, A. Rosen, J. Karen, H. Gleiter, On the validity of the Hall-Petch relationship in nanocrystalline materials, Scripta Metall., v. 23(1989). s. 1679-1684.
  • 40. T.G. Nieh, J. Wadsworth, Hall-Fetch relation in nanocrystalline solids, Scripta Metall. Mater., v. 25(1991), s. 955-958.
  • 41. A.M. El-Sherik, U. Erb, G. Palumbo, K.T. Aust. Deviations from Hall-Petch behaviour in as-prepared nanocrystalline nickel, Scripta Metall. Mater., v. 27(1992), s. 1185-1188.
  • 42. H.W. Song, S.R. Guo, Z.Q. Hu, A Coherent Polycrystal Model for the Inverse Hall-Petch Relation in Nanocrystalline Materials, Nanostruct. Mater., v. 11(1999), s. 203-210.
  • 43. H. Conrad, J. Narayan, On the grain size softening in nanocrystalline materials, Scripta Mater., v. 42(2000), s. 1025-1030.
  • 44. Ch.S. Pande, R.A. Masumura, Grain growth and deformation in nanocrystalline materials, Mater. Sci. Engn. A, v. 409(2005), s. 125-130.
  • 45. H.S. Kim, Y. Estrin, M.B. Bush, Plastic deformation behaviour of fine-grained materials, Acta Mater., v. 48(2000), s. 493-504.
  • 46. H.S. Kim, Y. Estrin, Phase mixture modeling of the strain rate dependent mechanical behavior of nanostructured materials, Acta Mater., v. 53(2005), s. 765-772.
  • 47. N. Hansen, Hall-Petch relation and boundary strengthening, Scripta Mater., v. 51(2004), s. 801-806.
  • 48. T. Shimokawa, A. Nakatani, H. Kitagawa, Grain-size dependence of the relationship between intrergranular and intragranular deformation of nanocrystalline Al by molecular dynamics simulations, Phys. Rev. B, v. 71(2005), s. 224110-1-224110-8.
  • 49. S. Benkassem, L. Capolungo, M. Cherkaoui, Mechanical properties and multiscale modeling of nanocrystalline materials, Acta Mater., v. 55(2007), s. 3563-3572.
  • 50. C.E. Carlton, P.J. Ferreira, What is behind the inverse Hall-Petch effect in nanocrystalline materials, Acta Mater., v. 55(2007), s. 3749-3756.
  • 51. K.A. Padmanabhan, G.P. Dinda, H. Hahn, H. Gleiter, Inverse Hall-Petch effect and grain boundary sliding controlled flow in nanocrystalline materials, Mater. Sci. Engn. A, v. 452-453(2007), s. 462-468.
  • 52. J.R. Trelewicz, Ch.A. Schuh, The Hall-Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation, Acta Mater., v. 55(2007), s. 5948-5958.
  • 53. R.A. Masamura, P.M. Hazzledine, S. Pande, Yield stress of fine grained materials, Acta Mater., v. 46(1998), s. 4527-4534.
  • 54. E. Nes, B. Holmedal, F. Evangelista, K. Marthinsen, Modelling grain boundary strengthening in ultra-fine grained aluminum alloys, Mater. Sci. Engn. A, v. 410-411(2005), s. 178-182.
  • 55. M. Furukawa, Y. Iwahashi, Z. Horita, M. Neinoto, N.K. Tsenev, R.Z. Valiev, T.G. Langdon, Structural evolution and the Hall-Petch relationship in an Al-Mg-Li-Zr alloy with ultra-fine grain size, Acta Mater., v. 45 (1997), s. 4751-4757.
  • 56. H. Hidaka, T. Tsuchiyama, S. Takaki, Relation between microstructure and hardness in Fe-C alloys with ultra fine grained structure, Scripta Mater., v. 44(2001), s. 1503-1506.
  • 57. S. Takaki, K. Kawasaki, Y. Kimura, Mechanical properties of ultra fine grained steels, J. Mater. Processing Technology, v. 117(2001), s. 359-363.
  • 58. N. Krasilnikov, W. Łojkowski, Z. Pakieła, R. Valiev, Tensile strength and ductility of ultra-fine-grained nickel processed by severe plastic deformation, Mater. Sci. Engn. A, v. 397(2005), s. 330-337.
  • 59. H. Hahn, P. Mondal, K.A. Padmanabhan, Plastic deformation of nanocrystalline materials, Nanostruct. Mater., v. 9(1997), s. 603-606.
  • 60. H- Hahn. K.A. Padmanabhan, A model for the deformation of nanocrystalline materials, Phil. Mag. B. v. 76(1997), s. 559-571.
  • 61. V. Vitek, Intrinsic stacking faults in body-centred cubic crystals, Phil. Mag., v. 18(1968), s. 773-786.
  • 62. E.B. Tadmor, S. Hai, A Peierls criterion for the onset of deformation twinning at a crack tip, J. Mech. Phys. Solids, v. 51(2003), s. 765-793.
  • 63. J.D. Embury, J.P. Hirth, On dislocation storage and the mechanical response of fine scale microstructures, Acta Metal. Mater., v. 42(1994), s. 2051-2056.
  • 64. A. Mishra, M. Verdier, Y.C. Lu, T.E. Mitchel, M. Nastasi, J.D. Embury, Structure and mechanical properties of Cu-X (X - Nb,Cr,Ni) nanolayered composites, Scripta Mater., v. 39(1998), s. 555-560.
  • 65. E. Arzt, Size effects in materials due to microstructural and dimensional constraints: A comparative review, Acta Mater., v. 46(1998), s. 5611-5626.
  • 66. J.P. Hirth, Some current topics in dislocation theory, Acta Mater., v. 48(2000), s. 93-104.
  • 67. L.H. Friedman, D.C. Chrzan, Scaling Theory of the Hall-Petch Relation for Multilayers, Phys. Rev. Lett., v. 81(1998), s. 2715-2718.
  • 68. P.M. Anderson, C. Li, Hall-Petch relations for multilayered materials, Nanostruct. Mater.,v. 5(1995), s. 349-362.
  • 69. R.C. Cammarata, Dynamic aspects regarding the mechanical behavior of multilayered thin films and their measurements, Scripta Mater., v. 50(2004), s. 751-755.
  • 70. M.E. Stoudt, R.C. Cammarata, R.E. Ricker, Suppression of fatigue cracking with nanometer-scale multilayered coatings. Scripta Mater., v. 43(2000), s. 491-496.
  • 71. J.D. Emhury, C.W. Sinclair, The mechanical properties of fine-scale two-phase materials, Mater. Sci. Engn. A, v. 319(2001), s. 37-45.
  • 72. N. Mara, A. Sergueeva, A. Misra, A.K. Mukherjee, Structure and high-temperature mechanical behavior relationship in nano-scaled multilayered materials, Scripta Mater., v. 50(2004), s. 803-806.
  • 73. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment, Acta Metal. Mater., v. 42(1994), s. 475-487.
  • 74. J.S. Stolken, A.G. Evans, A microbend test method for measuring the plasticity length scale, Acta Mater., v. 46(1998), s. 5109-5115.
  • 75. P. Shrotriya, S.M. Allameh, J. Lou, T. Buchheit, W.O. Soboyejo, On the measurement of the plasticity length scale parameter in LIGA nickel foils. Mechanics of Mater., v. 35(2003), s. 233-243.
  • 76. J. Lou, P. Shrotriya, S. Allameh, T. Buchheit, W.O. Soboyejo, Strain gradient plasticity length scale parameters for LIGA Ni MEMs thin films, Mater. Sci. Engn. A, v. 441(2006), s. 299-307.
  • 77. O.W. Dillon, J. Kratochvil, A strain gradient theory of plasticity, Int. J. Solids Struct., v. 6(1970), s. 1513-1533.
  • 78. N.A. Fleck, J.W. Hutchinson, Phenomenological theory for strain gradient effects in plasticity, J. Mech. Phys. Solids, v. 41(1993), s. 1825-1857.
  • 79. M.F. Ashby, Deformation of Plastically Non-Homogeneous Materials, Phil. Mag., v. 21(1970), s. 399-424.
  • 80. N.A. Fleck, J.W. Hutchinson, A reformulation of strain gradient plasticity, J. Mech. Phys. Solids, v. 49(2001), s. 2245-2271.
  • 81. D.-M. Duan, N.Q. Wu, W.S. Slaughter, S.X. Mao, Length scale effect on mechanical behavior due to strain gradient plasticity, Mater. Sci. Engn. A, v. 303(2001), s. 241-249.
  • 82. S.H. Chen, T.C. Wang, A new deformation theory with strain gradient effects, Int. J. Plasticity, v. 18(2002), s. 971-995.
  • 83. E.C. Aifantis, Update on a class of gradient theories, Mechanics of Mater., v. 35(2003), s. 259-280.
  • 84. I. Tsagrakis, A. Konstantinidis, E.C. Aifantis, Strain gradient and wavelet interpretation of size effects in yield and strength, Mechanics of Mater., v. 35(2003), s. 733-745.
  • 85. Y. Huang, S. Qu, K.C. Hwang, M. Li, H. Gao, A conventional theory of mechanism-based strain gradient plasticity. Int. J. Plasticity, v. 20(2004), s. 753-782.
  • 86. Ch.-S. Han, H. Gao, Y. Huang, W.D. Nix, Mechanism-based strain gradient crystal plasticity - I. Theory, J. Mech. Phys. Solids, v. 53(2005), s. 1188-1203.
  • 87. Ch-S. Han, H. Gao, Y. Huang, W.D. Nix, Mechanism-based strain gradient crystal plasticity - II. Analysis, J. Mech. Phys. Solids, v. 53(2005), s. 1204-1222.
  • 88. S.H. Chen, T.C. Wang, A new Hardening Law for Strain Gradient Plasticity, Acta Mater., v. 48(2000), s. 3997-4005.
  • 89. A. Needleman, J.G. Sevillano, Preface to the viewpoint set on: geometrically necessary dislocations and size dependent plasticity, Scripta Mater., v. 48(2003), s. 109-111.
  • 90. N.A. Fleck, M.F. Ashby, J.W. Hutchinson, The role of geometrically necessary dislocations in giving material strengthening, Scripta Mater., v. 48(2003), s. 179-183.
  • 91. L.P. Kubin, A. Mortensen, Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues, Scripta Mater., v. 48(2003), s. 119-125.
  • 92. H.M. Zbib, E.C. Aifantis, Size effects and length scales in gradient plasticity and dislocation dynamics, Scripta Mater., v. 48(2003), s. 155-160.
  • 93. V.P. Smyshlyaev, N.A. Fleck, The role of strain gradients in the grain size effect for polycrystals. J. Mech. Phys. Solids, v. 44(1996), s. 465-495.
  • 94. I. Groma, G. Voros, Origin of gradient terms in plasticity at different length scales, Scripta Mater., v. 48(2003), s. 161-165.
  • 95. K.E. Aifantis, J.R. Willis, Scale effects induced by strain-gradient plasticity and interfacial resistance in periodic and randomly heterogeneous media, Mechanics of Mater., v. 38(2006), s. 702-716.
  • 96. K.E. Aifantis, W.A. Soer, J.Th.M. De Hosson, J.R. Willis, Interfaces within strain gradient plasticity: Theory and experiments, Acta Mater., v. 54(2006), s. 5077-5085.
  • 97. J.Y. Shu, N.A. Fleck, Strain gradient crystal plasticity: Size-dependent deformation of bicrystals, J. Mech. Phys. Solids, v. 47(1999), s. 297-374.
  • 98. Z.C. Xia. J.W. Hutchinson, Crack tip fields in strain gradient plasticity, J. Mech.Phys. Solids, v. 44(1996), s. 1621-1648.
  • 99. Y. Wei, J.W. Hutchinson, Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity, J. Mech. Phys. Solids, v. 45(1997), s. 1253-1273.
  • 100. H. Jiang, Y. Huang, Z. Zhuang, K.C. Hwang, Fracture in mechanism-based strain gradient plasticity, J. Mech. Phys. Solids, v. 49(2001), s. 979-993.
  • 101. K.C. Hwang, H. Jiang, Y. Huang, H. Gao, Finite deformation analysis of mechanism-based strain gradient plasticity: torsion and crack tip field, Int. J. Plasticity, v. 19(2003), s. 235-251.
  • 102. Y. Wei, X. Qiu, K.C. Hwang, Steady-state crack growth and fracture work based on the theory of mechanism-based strain gradient plasticity, Engn. Fracture Mechanics, v. 71(2004), s. 107-125.
  • 103. M.X. Shi, Y. Huang, K.C. Hwang, Plastic flow localization in mechanism-based strain gradient plasticity, Int. J. Mech. Sci., v. 42(2000), s. 2115-2131.
  • 104. J.Y. Shu, C.Y. Barlow, Strain gradient effects on microscopic strain field in a metal matrix composite, Int. J. Plasticity, v. 16(2000), s. 563-591.
  • 105. N. Wang, Z. Wang, K.T. Aust, U. Erb, Room temperature creep behaviour of nanocrystalline nickel produced by an electrode position technique, Mater. Sci. Engn. A, v. 237(1997), s. 150-158.
  • 106. X. Wu, Y.T. Zhu, M.W. Chen, E. Ma, Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni, Scripta Mater., v. 54(2006), s. 1685-1690.
  • 107. Z. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, Grain boundary-mediated plasticity in nanocrystalline nickel, Science, v. 305(2004), s. 654-657.
  • 108. Y.J. Li, J. Mueller, H.W. Hoppel, M. Goken, W. Blum, Deformation kinetics of nanocrystalline nickel, Acta Mater., v. 55(2007), s. 5708-5717.
  • 109. X.-L. Wu, E. Ma, Deformation twinning mechanisms in nanocrystalline Ni, Appl. Phys. Lett., v. 88(2006), s. 061905-1-061905-3.
  • 110. A. Sergueeva, N. Mara, A.K. Mukherjee, Grain boundary sliding in nanomaterials at elevated temperatures, J. Mater. Sci., v. 42(2007), s. 1433-1438.
  • 111. A. Sergueeva, N. Mara, A.K. Mukherjee, Plasticity at really diminished length scales, Mater. Sci. Engn. A, v. 463(2007), s. 8-13.
  • 112. N.A. Mara, A.V. Sergueeva, T.D. Mara, S.X. McFadden, A.K. Mukherjee, Superplasticity and cooperative grain boundary sliding in nanocrystalline Ni3Al, Mater. Sci. Engn. A, v. 463(2007), s. 238-244.
  • 113. A.C. Lund, C.A. Schuh, Strength asymmetry in nanocrystalline metals under multiaxial loading, Acta Mater., v. 53(2005), s. 3193-3205.
  • 114. X.H. Zhu. J.E. Carsley, W.W. Milligan. E.C. Aifantis, On the failure of pressure-sensitive plastic materials. Part I. Models of yield & shear band behavior, Scripta Mater., v. 36(1997), s. 721-726.
  • 115. J.E. Carsley, W.W. Milligan, X.H. Zhu, E.C. Aifantis, On the failure of pressure-sensitive plastic materials. Part II. Comparisons with experiments on ultra fine grained Fe-10%Cu alloys, Scripta Mater., v. 36(1997), s. 727-732.
  • 116. B. Jiang, G.J. Weng, A Composite Model for the Grain-Size Dependence of Yield Stress of Nanograined Materials, Metall. Mater. Trans. A, v. 34A(2003), s. 765-772.
  • 117. B. Jiang, G.J. Weng, A theory of compressive yield strength of nano-grained ceramics, Int. J. Plasticity, v. 20(2004), s. 2007-2026.
  • 118. B. Jiang. G.J. Weng, A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials, J. Mech. Phys. Solids, v. 52(2004), s. 1125-1149.
  • 119. A.C. Lund, T.G. Nieh, C.A. Schuh, Tension/compression strength asymmetry in a simulated nanocrystalline metal, Phys. Rev. B, v. 69(2004), s. 012101-1-012101-4.
  • 120. Y. Xiang, J.J. Vlassak, Bauschinger and size effects in thin-film plasticity, Acta Mater., v. 54(2006), s. 5449-5460.
  • 121. G.G. Yapici, I.J. Beyerlein, I. Karaman, C.N. Tome, Tension-compression asymmetry in severely deformed pure copper, Acta Mater., v. 55(2007), s. 4603-4613.
  • 122. L. Thilly, P.O. Renault. S. Van Petegem, S. Brandstetter, B. Schmitt, H. Van Swygenhoven, V. Vidal, F. Lecouturier, Evidence of internal Bauschinger test in nanocomposite wires during in situ macroscopic tensile cycling under synchrotron beam, Appl. Phys. Lett., v. 90(2007), s. 241907-1-241907-3.
  • 123. J. Monk, D. Farkas, Tension-compression asymmetry and size effects in nanocrystalline Ni nanowires. Phil. Mag., v. 87(2007), s. 2233-2244.
  • 124. C. Brandl, P.M. Dertlet, H. Van Swygenhoven, General-stacking-fault energies in highly strained metallic environments: Ab initio calculations, Phys. Rev. B, v. 76(2007), s. 054124-1-054124-8.
  • 125. H. Fang, M.F. Horstemeyer, M.I. Baskes, K. Solanki, Atomistic simulations of Bauschinger effects of metals with high angle and low angle grain boundaries, Computer Methods in Appl. Mechanics and Engn., v. 193(2004), s. 1789-1802.
  • 126. E.M. Bringa, A. Caro, E. Leveugle, Pressure effects on grain boundary plasticity in nanophase metals. Appl. Phys. Lett., v. 89(2006), s. 023101-1-023101-3.
  • 127. S.-J. Zhao, K. Albe, H. Hahn, Grain size dependence of the bulk modulus of nanocrystalline nickel. Scripta Mater., v. 55(2006), s. 473-476.
  • 128. J. Zhang, Y. Zhao, B. Pałosz, Comparative studies of compressibility between nanocrystalline and bulk nickel. Appl. Phys. Lett., v. 90(2007), s. 043112-1-043112-3.
  • 129. Y. Zhao. T. D. Shen, J. Zhang, High P-T Nano-Mechanics of Polycrystalline Nickel, Nanoscale Res. Lett., v. 2(2007), s. 476-491.
  • 130. N.A. Stelmashenko, M.G. Walls, L.M. Brown, Y.V. Milman, Microindentations on W and Mo oriented single crystals: An STM study, Acta Metall. Mater., v. 41(1993), s. 2855-2865.
  • 131. Q. Ma, D.R. Clarke, Size dependent hardness of silver single crystals, J. Mater. Res., v. 10(1995), s. 853-863.
  • 132. W.J. Poole, M.F. Ashby, N.A. Fleck, Micro-hardness of annealed and work-hardened copper polycrystal, Scripta Metall. Mater., v. 34(1996), s. 559-564.
  • 133. K.W. McElhaney, J.J. Vlassak, W.D. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, J. Mater. Res., v. 13(1998), s. 1300-1306.
  • 134. N.I. Tymiak, D.E. Krarner, D.F. Bahr, T.J. Wyrobek, W.W. Gerberich, Plastic strain and strain gradients at very small indentation depths, Acta Mater., v. 49(2001), s. 1021-34.
  • 135. W.D. Nix, H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, J. Mech. Phys. Solids, v. 46(1998), s. 411-425.
  • 136. A.A. Elmustafa, D.S. Stone, Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity, J. Mech. Phys. Solids, v. 51(2003), s. 357-381.
  • 137. S. Swaddiwudhipong, K.K. Tho, J. Hua, Z.S. Liu, Mechanism-based strain gradient plasticity in Co axisymmetric element, Int. J. Solids Struct., v. 43(2006), s. 1117-1130.
  • 138. H. Gleiter, Nanocrystalline materials, Prog. Mater. Sci., v. 33(1989), s. 223-315.
  • 139. H. Gleiter, Materials with ultrafine grain size, in: Hansen N. (red.), Deformation of polycrystals: mechanisms and microstructures, Roskilde: Riso National Laboratory 1981, s. 15-21.
  • 140. H. Gleiter, P. Marquardt, Nanocrystalline Structures - An Approach to New Materials? (Nanokristalline Strukturen - Ein Weg Zu Neuen Materialen?) Zeitschrift fur Metallkunde, v. 75(1984), s. 263-267.
  • 141. T. Lowe, The revolution in nanometals, Adv. Mater. & Proc., v. 1(2002), s. 63-65.
  • 142. K.A. Padmanabhan, Mechanical properties of nanostructured materials, Mater. Sci. Engn. A. v. 304-306(2001), s. 200-205.
  • 143. P.G. Sanders, J.A. Eastman, J.R. Weertman, Pore distributions in nanocrystalline metals from small-angle neutron scattering, Acta Mater., v. 12(1998), s. 4195-4202.
  • 144. P.G. Sanders, J.R. Weertman, J.G. Baker, Structure of nanocrystalline palladium and copper studied by small angle neutron scattering, J. Mater. Res., v. 11(1996), s. 3110-3120.
  • 145. S. Van Petegem, F. DallaTorre, D. Segers, H. Van Swygenhoven, Free volume in nanostructured Ni, Scripta Mater., v. 48(2003), s. 17-22.
  • 146. S.R. Agnew, B.R. Elliott. C.J. Youngdahl, K.J. Hemker, J.R. Weertman, Microstructure and mechanical behavior of nanocrystalline metals, Mater. Sci. Engn. A, v. 285(2000), s. 391-396.
  • 147. K.E. Gonsalves, H. Li, R. Perez, P. Santiago, M. Jose-Yacaman, Synthesis of nanostructured metals and metal alloys from organometallics, Coordination Chemistry Reviews, v. 206-207(2000), s. 607-630.
  • 148. G.-M. Chow, L.K. Kurihara, Chemical Synthesis and Processing of Nanostructured Powders and Films, in: Nanostructured Materials, Processing, Properties and Potential Applications, red. Carl C. Koch, Noyes Publications, Wiliam Andrew Publishing, New York, 2002, s. 3-50.
  • 149. B.Q. Han, E.J. Lavernia, F.A. Mohamed, Mechanical Properties of Nanostructured Materials, Rev. Advanced Mater. Sci., v. 9(2005), s. 1-16.
  • 150. D.B. Wilkin, E.J. Lavernia, Synthesis and mechanical behavior of nanostructured materials via cryomilling, Prog. Mater. Sci., v. 51(2006), s. 1-60.
  • 151. J.R. Groza, Nanocrystalline Powder Consolidation Methods, in: Nanostructured Materials, Processing, Properties and Potential Applications, red. Carl C. Koch, Noyes Publications, Wiliam Andrew Publishing, New York, 2002, s. 115-178.
  • 152. H. Dybiec, Plastic consolidation of metallic powders, Archives of Metallurgy and Materials, v. 52(2007), s. 161-170.
  • 153. H. Dybiec, P. Kozak, Mechanical properties of aluminium wires produced by plastic consolidation of fine grained powders. Solid State Phenomena, v. 101-102(2005), s. 131-134.
  • 154. A. Robertson, U. Erb, G. Palumbo, Practical applications for electrodeposited nanocrystalline materials, Nanostruct. Mater., v. 12(1999), s. 1035-1040.
  • 155. S. Kobayashi, Effect of interphase boundary connectivity on fracture behavior of ultrafine-grained Ni-4.4 mass% P alloy, Scripta Mater., v. 49(2003), s. 99-104.
  • 156. K.J. Hemker, H. Last, Microsample tensile testing of LIGA nickel for MEMS applications, Mater. Sci. Engn. A, v. 319-321(2001), s. 882-886.
  • 157. H.S. Cho, K.J. Hemker, K. Lian, J. Goettert, G. Dirras, Measured mechanical properties of LIGA Ni structures, Sensors and Actuators A, v. 103(2003), s. 59-63.
  • 158. K. Pyrzanowski, Badanie stabilności temperaturowej nanokrystalicznego niklu otrzymywanego metodą elektroosadzania, Praca magisterska pod kierunkiem Z. Pakieły, Wydział Inżynierii Maleriałowej PW, Warszawa, 2007.
  • 159. P. Michałowski, Wpływ nanostruktury na zjawisko gradientu odkształcenia w nanokrystalicznym niklu, Praca magisterska pod kierunkiem Z. Pakieły, Wydział Inżynierii Materiałowej PW, Warszawa, 2007.
  • 160. T. Mukai, S. Suresh. K. Kita, H. Sasaki, N. Kobayashi, K. Higashi, A. Inoue, Nanostructured Al-Fe alloys produced by e-beam deposition: Static and dynamic tensile properties, Acta Mater., v. 51(2003), s. 4197-4208.
  • 161. H. Sasaki, K. Kita, J. Nagahora. A. Inoue, Nanostructures and mechanical properties of bulk Al-Fe alloys prepared by electron-beam deposition. Mater. Trans.,v. 45(2001), s. 1561-1565.
  • 162. A. Inoue, Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems, Prog. Mater. Sci., v. 43(1998), s. 365-520.
  • 163. T. Kulik, Nanocrystallization of metallic glasses, J. Non-Crystalline Solids, v. 2879(2001), s. 145-161.
  • 164. P.W. Bridgman, Studies in Large Plastic Flow and Fracture, Harvard University Press, Cambridge, Massachusetts, 1964.
  • 165. I. Saunders, J. Nutting, Deformation of Metals to High Strains Using Combinations of Torsion and Compression, Metal. Sci., v. 18(1984), s. 571-575.
  • 166. R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation, Mater. Sci. Engn. A, v. 168(1993), s. 141-148.
  • 167. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci., v. 45(2000), s. 103-189.
  • 168. R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci., v. 51(2006), s. 881-981.
  • 169. V.M. Segal, The Method of Materials Preparation for Subsequent Working. Patent USSR, No 575892 (1977).
  • 170. J. Richert, M. Richert, A new method for unlimited deformation of metals and alloys, Aluminium, v. 62(1986), s. 604-607.
  • 171. G.A. Salishchev, O.R. Valiakhmetov, R.M. Galeyev, Formation of submicrocrystalline structure in the titanium alloy VT8 and its influence on mechanical properties, J. Mater. Sci., v. 28(1993), s. 2898-2902.
  • 172. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process, Scripta Mater., v. 39(1998), s. 1221-1227.
  • 173. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials development of the accumulative roll-bonding (ARB) process, Acta Mater., v. 47(1999), s. 579-583.
  • 174. N. Tsuji, Y. Saito, H. Utsunomiya, S. Tanigava, Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process, Scripta Mater., v. 40(1999), s. 795-800.
  • 175. J.Y. Huang, Y.T. Zhu, H. Jiang, T.C. Lowe, Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening, Acta Mater., v. 49(2001), s. 1497-1505.
  • 176. Z. Cyganek, F. Grosman, J. Pawlicki, Walcowanie z cykliczną zmianą schematu obciążenia - stan obecny i oczekiwania, Mat. Konf. Naukowej "Walcownictwo 2005", Ustroń 2005, s. 255-259.
  • 177. A. Korznikov, I. Safarov, A.A. Nazarov, R.Z. Valiev, High strength state in low carbon steel with submicron fibrous structure. Mater. Sci. Engn. A, v. 206(1996), s. 39-44.
  • 178. A. Korznikov, I. Safarov, Z. Pakieła, J.W. Wyrzykowski, Mechanical Properties of Low-Carbon Low-Alloy Steels with Submicrocrystalline Structure, Inżynieria Materiałowa, v. 104(1998), s. 323-326.
  • 179. N.R. Tao, M.L. Sui, J. Lu, K. Lu, Surface Nanocrystallizalion of Iron Induced by Ultrasonic Shot Peening, Nanostruct. Mater., v. 11(1999), s. 433-440.
  • 180. G. Liu, J. Lu, K. Lu, Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening. Mater. Sci. Engn. A, v. 286(2000). s. 91-95.
  • 181. X. Wu, N. Tao, Y. Hong, B. Xu, J. Lu, K. Lu. Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP, Acta Mater., v. 50(2002), s. 2075-2084.
  • 182. M. Lewandowska, H. Garbacz, W. Pachla, A. Mazur, K.J. Kurzydłowski, Hydrostatic extrusion and nanostructure formation in an aluminium alloy. Solid State Phenomena, v. 101-102(2005), s. 65-68.
  • 183. M. Lewandowska, Kształtowanie mikrostruktury i właściwości stopów aluminium metodą wyciskania hydrostatycznego, Prace Naukowe Politechniki Warszawskiej, Inżynieria Materiałowa, z. 19, 2006.
  • 184. Z. Pakieła, H. Garbacz, M. Lewandowska, A. Drużycka-Wiencek, M. Suś-Ryszkowska, W. Zieliński, K.J. Kurzydłowski, Structure and properties of nanomaterials produced by severe plastic deformation, Nukleonika, v. 51(Supplement 1) (2006), s. S19-S25.
  • 185. A. Korznikov, Z. Pakieła, KJ. Kurzydłowski, Influence of Long Range Ordering on Mechanical Properties of Nanocrystalline Ni3Al, Scripta Mater., v. 45(2001), s. 309-315.
  • 186. A.V. Korznikov, G. Tram, O. Dimitrov, G.K Korznikova, S.R. Idrisova, Z. Pakieła, The mechanism of nanocrystalline structure formation in Ni3Al during severe plastic deformation, Acta Mater., v. 49(2001), s. 663-671.
  • 187. Z. Pakieła, W. Zieliński, A.V. Korznikov, K.J. Kurzydłowski, Microstructure and mechanical properties of nanocrystalline Ni3Al, Inżynieria Materiałowa, v. 124(2001), s. 698-701.
  • 188. W. Zieliński, Z. Pakieła, K.J. Kurzydłowski, TEM in situ Annealing of Severely Deformed Ni3Al Intermetallic Compound, Mater. Chemistry and Physics, v. 81(2003), s. 452-456.
  • 189. J. Mizera, Z. Pakieła, K.J. Kurzydłowski, Texture and Residual Stresses in Ti-Al and Ti-Al-Nb Alloy Subjected to Severe Plastic Deformation, Archives of Metallurgy and Materials, v. 50(2005), s. 395-402.
  • 190. M. Suś-Ryszkowska, Z. Pakieła, J.W. Wyrzykowski, Severe plastic deformation influence on the microstructure inhomogeneity, Proc. of the 7th International Scientific Conference - Achievements in Mechanical & Materials Engineering, Zakopane, 1998, s. 483-484.
  • 191. M. Suś-Ryszkowska, Z. Pakieła, A.V. Korznikov, J.W. Wyrzykowski, Microstructural Inhomogeneity Observed in Iron Subjected to Torsion under High Pressure, Proc. of the 3rd Int. School on High Pressure Techniques and Advanced High Pressure Research Topics (red. W. Łojkowski, T. Yamane), Warsaw, 1999, s. 13-16.
  • 192. Z. Pakieła, M. Suś-Ryszkowska, Influence of Microstructure Heterogeneity on the Mechanical Properties of Nanocrystalline Materials Processed by Severe Plastic Deformation, in: Nanomaterials by Severe Plastic Deformation, red. M.J. Zehetbauer, R.Z. Valiev, Willey-Vch, Weinham, 2004, s. 194-199.
  • 193. Z. Pakieła, M. Suś-Ryszkowska, A. Drużycka-Wiencek, K. Sikorski, K.J. Kurzydłowski, Microstructure and properties of nano-metal obtained by severe plastic deformation, Inżynieria Materiałowa, v. 140(2004), s. 407-410.
  • 194. G.K Korznikova, A.V. Korznikov, Z. Pakieła, K.J. Kurzydłowski, Formation of a Nanocrystalline Structure in the Hard Magnetic Alloy Fe-30%Cr-23%Co During Severe Plastic Deformation, Materials Chemistry and Physics, v. 81(2003), s. 401-403.
  • 195. G. Korznikova, Z. Pakieła, A. Korznikov K.J. Kurzydłowski, Mechanical Properties of The Hard Magnetic Alloy Fe-23%Co-30%Cr in Different Structural States, Solid State Phenomena, v. 94(2003), s. 63-66.
  • 196. A.V. Korznikov, Z. Pakieła, G.F. Korznikova, K. Kurzydłowski, The Superplasticity of Hard Magnetic Alloy Fe-23wt.%Co-30%Cr with Submicrocrystalline Structure, Solid State Phenomena, v. 101-102 (2005), s. 69-72.
  • 197. Y. Ivanisenko, W. Łojkowski, R.Z. Valiev, H.-J. Fecht, The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion, Acta Mater., v. 51(2003), s. 5555-5570.
  • 198. Z. Horita, T. Fujinami, T.G. Langdon, The potential for scaling ECAP: Effect of sample size on grain refinement and mechanical properties. Mater. Sci. Engn. A, v. 318(2001), s. 34-41.
  • 199. R.Z. Valiev, I.V. Alexandrov, Development of Severe Plastic Deformation Techniques for the Fabrication of Bulk Nanostructured Materials, Ann. Chim. Sci. Mater., v. 27(2002), s. 3-14.
  • 200. M. Suś-Ryszkowska, T. Wejrzanowski, Z. Pakieła, K.J. Kurzydłowski, Struktura i właściwości mechaniczne żelaza po dużym odkształceniu plastycznym realizowanym metodą ECAP, Archiwum Nauki o Materiałach, v. 24(2003), s. 627-641.
  • 201. M. Suś-Ryszkowska, T. Wejrzanowski, Z. Pakieła, K.J. Kurzydłowski, Microstructure of ECAP severely deformed iron and its mechanical properties, Mater. Sci. Engn. A, v. 369(2004), s. 151-156.
  • 202. V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, R.Z. Valiev, Microstructure and properties of pure Ti processed by ECAP and cold extrusion. Mater. Sci. Engn. A, v. 303(2001), s. 82-89.
  • 203. S.L. Semiatin, V. M. Segal, R.L. Goetz, R.E. Goforth, T. Hartwig, Workability of a gamma titanium aluminide alloy during equal channel angular extrusion, Scripta Metall. Mater., v. 33(1995), s. 535-540.
  • 204. S.M.L. Sastry, R.N. Mahapatra, Grain refinement of intermetallics by severe plastic deformation. Mater. Sci. Engn. A, v. 329-331(2002), s. 872-877.
  • 205. S.L. Semiatin, D.P. Delo, E.B. Shell, Effect of material properties and tooling design on deformation and fracture during equal channel angular extrusion, Acta Mater., v. 48(2000), s. 1841-1851.
  • 206. I.V. Alexandrov, G.I. Raab, V. U. Kazyhanov, L.O. Shestakova, R.Z Valiev, R.J. Dowding, Ultrafine-grained tungsten produced by SPD techniques, TMS Annual Meeting, 2002, s. 199-207.
  • 207. M.W. Grabski, Nadplastyczność strukturalna metali, Wydawnictwo Śląsk, Katowice, 1973.
  • 208. S. Lee, M. Furukawa, Z. Horita, T.G. Langdon, Developing a superplastic forming capability in a commercial aluminum alloy without scandium or zirconium additions. Mater. Sci. Engn. A, v. 342(2003), s. 294-301.
  • 209. Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, T.G. Langdon, Superplastic forming at high strain rates after severe plastic deformation, Acta Mater., v. 48(2000), s. 3633-3640.
  • 210. K.-T. Park, D.-Y. Hwang, Y.-K. Lee, Y.-K. Kim, D.H. Shin, High strain rate superplasticity of submicrometer grained 5083 Al alloy containing scandium fabricated by severe plastic deformation. Mater. Sci. Engn. A, v. 341(2003), s. 273-281.
  • 211. H. Conrad, J. Narayan, Mechanisms for grain size hardening and softening in Zn, Acta Mater., v. 50(2002), s. 5067-5078.
  • 212. H. Conrad, Grain-Size Dependence of the Flow Stress of Cu from Millimeters to Nanometers. Metall. Mater. Trans. A, v. 35A(2004), s. 2681-2695.
  • 213. S. Komura, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, Optimizing the procedure of equal-channel angular pressing for maximum superplasticity. Mater. Sci. Engn. A, v. 297(2001), s. 111-118.
  • 214. F. Dalla Torre, R. Lapovok, J. Sandlin, P.F. Thomas. C.H.J. Davies, E.V. Pereloma, Microstructures and properties of copper processed by equal channel angular extrusion for 1-16 passes, Acta Mater., v. 52(2004), s. 4819-4832.
  • 215. A.P. Zhilyaev. B.-K. Kim, G.V. Nurislamova, M.D. Baro, J.A. Szpunar, T.G. Langdon, Orientation imaging microscopy of ultrafine-grained nickel, Scripta Mater., v. 46(2002), s. 575-580.
  • 216. A.P. Zhilyaev, B.-K. Kim, J.A. Szpunar, M.D. Baro. T.G. Langdon, The microstructural characteristics of ultrafine-grained nickel. Mater. Sci. Engn. A, v. 391(2005), s. 377-389.
  • 217. P. Nowakowski, Wpływ parametrów przeciskania przez kanał kątowy na mikrostruktury i właściwości stopu Al 5483, Praca magisterska pod kierunkiem Z. Pakieły, Wydział Inżynierii Materiałowej PW, Warszawa, 2007.
  • 218. Z. Pakieła, P. Nowakowski, L. Olejnik, J. Mizera, Mechanical Properties of 5483 Al Alloy Processed by ECAP, in: Bulk Nanostructured Materials, Conf. Proc., Ufa, 2007, s. 165.
  • 219. V.S. Zhernakov, I.N. Budilov, G.I. Raab, I.V. Alexandrov, R.Z. Valiev, A Numerical Modelling and Investigations of Flow Stress and Grain Refinement During Equal-Channel Angular Pressing. Scripta Mater., v. 44(2001), s. 1765-1769.
  • 220. S.Ch. Baik, Y. Estrin, H.S. Kim, R.J. Hellmig, Dislocation density-based modeling of deformation behavior of aluminium under equal channel angular pressing, Mater. Sci. Engn. A, v. 351(2003), s. 86-97.
  • 221. A. Rosochowski, L. Olejnik, Numerical and physical modelling of plastic deformation in 2-turn equal channel angular extrusion, J. Mater. Processing Technology, v. 125-126(2002), s. 309-316.
  • 222. A. Ma, K. Suzuki, Y. Nishida, N. Saito, I. Shigematsu, M. Takagi. H. Iwata, A. Watazu, T. Imura, Impact toughness of an ultrafine-grained Al-11mass%Si alloy processed by rotary-die equal-channel angular pressing. Acta Mater., v. 53(2005), s. 211-222.
  • 223. A. Belyakov, K. Tsuzaki, H. Miura, T. Sakai, Effect of initial microstructures on grain refinement in a stainless steel by large strain deformation. Acta Mater., v. 51(2003), s. 847-861.
  • 224. Z. Pakieła i wsp., Opracowanie nanokrystalicznych materiałów na targety oraz technologii wytwarzania targetów do źródeł łukowych, Sprawozdanie z projektu badawczego, Wydział Inżynierii Materiałowej PW, Warszawa, 2007.
  • 225. Y. Nishida, H. Arima, J.C. Kim, T. Ando, Rotary-die equal-channel angular pressing of an Al-7 mass% Si-0.35 mass% Mg alloy, Scripta Mater., v. 45(2001), s. 261-266.
  • 226. G.J. Raah, R.Z. Valiev, T.C. Lowe. Y.T. Zhu, Continuous processing of ultrafine grained Al by ECAP-Conform, Mater. Sci. Engn. A, v. 382 (2004), s. 30-34.
  • 227. A. Rosochowski, L. Olejnik, Concept of a New Process of Incremental BCAP, in: Bulk Nanostructured Materials, Conf. Proc., Ufa, 2007, s. 21.
  • 228. M. Kamachi, M. Furukawa, Z. Horita, T.G. Langdon, Equal-channel angular pressing using plate samples. Mater. Sci. Engn. A, v. 361(2003), s. 258-266.
  • 229. L. Olejnik i wsp., Technologia wytwarzania płyt z metali o strukturze ultradrobnoziarnistej, Uczelniany Program Badawczy, Politechnika Warszawska, 2007/2008.
  • 230. U. Klement, U. Erb, A.M. El-Sherik, K.T. Aust, Thermal stability of nanocrystalline Ni, Mater. Sci. Engn. A, v. 203(1995), s. 177-186.
  • 231. A.V. Korznikov, Z.Pakieła, K.J. Kurzydłowski, Thermal Stability of Nanocrystalline Ni, Acta Phys. Polonica, v. 102(2002), s. 265-271.
  • 232. A.P. Zhilyaev, G.V. Nurislamova, M.D. Baro, R.Z. Valiev, T.G. Langdon, Thermal Stability and Microstructural Evolution in Ultrafine-Grained Nickel after Equal-Channel Angular Pressing (ECAP), Metal. Mater. Trans. A, v. 33A(2002), s. 1865-1868.
  • 233. G.J. Fan, L.F. Fu, D.C. Qiao, H. Choo. P.K. Liaw, N.D. Browning, Grain growth in a bulk nanocrystalline Co alloy during tensile plastic deformation, Scripta Mater., v. 54(2006), s. 2137-2141.
  • 234. F. Sansoz, V. Dupont, Grain growth behavior at absolute zero during nanocrystalline metal indentation, Appl. Phys. Lett., v. 89(2006), s. 111901-1-111901-3.
  • 235. R. Wurschum, S. Gruss. B.B. Gissibl, H. Natter, R. Hempelmann, H.-E. Schaefer, Free Volumes and Thermal Stability of Electro-Deposited Nanocrystalline Pd, Nanostruct. Mater., v. 9(1997), s. 615-618.
  • 236. Ch. Xiao, R.A. Mirshams, S.H. Whang, W.M. Yin, Tensile behavior and fracture in nickel and carbon doped nanocrystalline nickel, Mater. Sci. Engn. A, v. 301(2001), s. 35-43.
  • 237. G.D. Hibbard, K.T. Aust, U. Erb, Thermal stability of electrodeposited nanocrystalline Ni-Co alloys, Mater. Sci. Engn. A, v. 433(2006), s. 195-202.
  • 238. P. Choi, M. da Silva, U. Klement, T. Al-Kassab, R. Kirchheim, Thermal stability of electrodeposited nanocrystalline Co-1.1 at.%P, Acta Mater., v. 53(2005), s. 4473-4481.
  • 239. C.E. Krill, R. Klein, S. Janes, R. Birringer, Thermodynamic stabilization of grain boundaries in nanocrystalline alloys, Mater. Sci. Forum, v. 179-181(1995), s. 443-448.
  • 240. A. Michels, C.E. Krill, H. Ehrhardt, R. Birringer, D.T. Wu, Modelling the Influence of Grain Size-Dependent Solute Drag on the Kinetics of Grain Growth in Nanocrystalline Materials, Acta Mater., v. 47(1999), s. 2143-2152.
  • 241. P.G. Sanders, G.E. Fougere, L.J. Thompson, J.A. Estman, J.R. Weertman, Improvements in the Synthesis and Compaction of Nanocrystalline Materials, Nanostruct. Mater., v. 8(1997), s. 243-252.
  • 242. F. Liu, R. Kirchheim, Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation, J. of Crystal. Growth, v. 264(2004), s. 385-391.
  • 243. J.W. Christian, S. Mahajan, Deformation Twinning, Prog. Mater. Sci., v. 39(1995), s. 1-157.
  • 244. M.A. Meyers, O. Vohringer, A. Lubarda. The Onset of Twinning in Metals: a Constitutive Description. Acta Mater., v. 49(2001), s. 4025-4039.
  • 245. E.B. Tadmor, N. Bernstein, A first-principles measure for the twinnability of FCC metals, J. Mech. Phys. Solids, v. 52(2004), s. 2507-2519.
  • 246. N. Bernstein, E.B. Tadmor, Tight-binding calculations of stacking energies and twinnability in fcc metals, Phys. Rev. B, v. 69(2004). s. 094116-1-094116-10.
  • 247. M.S. Szczerba, T. Bajor, T. Tokarski, Is there a critical resolved shear stress for twinning in face-centred cubic crystals? Phil. Mag., v. 84(2004), s. 481-502.
  • 248. J. Marian, W. Cai, V. V. Bulatov, Dynamic transitions from smooth to rough to twinning in dislocation motion, Nature Mater., v. 3(2004), s. 158-163.
  • 249. H. Van Swygenhoven, P.M. Derlet, A. Hasnaoui, Atomic mechanism for dislocation emission from nanosized grain boundaries, Phys. Rev. B, v. 66(2002), s. 024101-1-024101-8.
  • 250. A.G. Froseth, P.M. Derlet, H. Van Swygenhoven, Dislocations emitted from nanocrystalline grain boundaries: Nucleation and splitting distance, Acta Mater., v. 52(2004), s. 5863.
  • 251. H. Van Swygenhoven, P.M. Derlet, A.G. Froseth. Nucleation and propagation of dislocations in nanocrystalline fcc metals, Acta Mater., v. 54(2006), s. 1975-1983.
  • 252. N. Wang, Z. Wang, K.T. Aust, U. Erb, Effect of grain size on mechanical properties of nanocrystalline materials, Acta Metall. Mater., v. 43(1995), s. 519-528.
  • 253. P.G. Sanders, M. Rittner, E. Kiedaish, J.A. Weertman, H. Kung, Y.C. Lu, Creep of nanocrystalline Cu, Pd, and Al-Zr, Nanostruct. Mater., v. 9(1997), s. 433-440.
  • 254. W.M. Yin, S.H. Whang, R. Mirshams, C.H. Xiao, Creep behavior of nanocrystalline nickel at 290 and 373 K, Mater. Sci. Engn. A, v. 301(2001), s. 18-22.
  • 255. S. Sakai, H. Tanimoto, E. Kita, H. Mizubayashi, Characteristic creep behavior of nanocrystalline metals found for high-density gold, Phys. Rev. B, v. 66(2002), s. 214106-1-214106-9.
  • 256. Y.J. Li, W. Blum, F. Breutinger, Does nanocrystalline Cu deform by Coble creep near room temperature? Mater. Sci. Engn. A, v. 387-389(2004), s. 585-589.
  • 257. Q. Wei, D. Jia, K.T. Ramesh, E. Ma, Evolution and microstructure of shear bands in nanostructured Fe, Appl. Phys. Lett., v. 81(2002), s. 1240-1242.
  • 258. D. Jia, K.T. Ramesh, E. Ma, Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron, Acta Mater., v. 51(2003), s. 3495-3509.
  • 259. Q. Wei, L. Kecskes, T. Jiao, K.T. Hartwig, K.T. Ramesh, E. Ma, Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation, Acta Mater., v. 52(2004), s. 1859-1869.
  • 260. S.D. Wu, Z.G. Wang. C.B. Jiang. G.Y. Li, I.V. Alexandrov, R.Z. Valiev, Shear bands in cyclically deformed ultrafine grained copper processed by ECAP, Mater. Sci. Engn. A, v. 387-389(2004), s. 560-564.
  • 261. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Deformation mechanism crossover and mechanical behaviour in nanocrystalline materials, Phil. Mag. Lett., v. 83(2003), s. 385-393.
  • 262. H. Van Swygenhoven, M. Spaczer, D. Farkas, A. Caro, Role of grain size and the presence of low and high angle grain boundaries in the deformation mechanism of nanophase Ni: a molecular dynamics computer simulation, Nanostruct. Mater., v. 12(1999), s. 323-326.
  • 263. H. Van Swygenhoven, M. Spaczer, A. Caro, Microscopic description of plasticity in computer generated metallic nanophase samples: A comparison between Cu and Ni, Acta Mater., v. 47(1999), s. 3117-3126.
  • 264. D. Farkas, H. Van Swygenhoven, P.M. Derlet, Intergranular fracture in nanocrystalline metals, Phys. Rev. B, v. 66(2002), s. 060101-1-060101-4.
  • 265. D. Farkas, S. Van Petegem, P.M. Derlet, H. Van Swygenhoven, Dislocation activity and nano-void formation near crack tips in nanocrystalline Ni, Acta Mater., v. 53(2005), s. 3115-3123.
  • 266. Z. Chen, J. Ding, Molecular dynamics studies on dislocations in crystallites of nanocrystalline ?-iron, Nanostruct. Mater., v. 10(1998), s. 205-215.
  • 267. J. Hartford, B. von Sydow, G. Wahnstrom, B.I. Lundqvist, Peierls barriers and stresses for edge dislocations in Pd and Al calculated from first principles, Phys. Rev. B, v. 58(1998), s. 2487-2496.
  • 268. C. Brandl, E. Bitzek, P.M. Derlet, H. Van Swygenhoven, Slip transfer through a general high angle grain boundary in nanocrystalline aluminum, Appl. Phys. Lett., v. 91(2007), s. 111914-1-111914-3.
  • 269. V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, H. Gleiter, Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation, Acta Mater., v. 49(2001), s. 2713-2722.
  • 270. P.M. Derlet, H. Van Swygenhoven, Length scale effects in the simulation of deformation properties of nanocrystalline metals, Scripta Mater., v. 47(2002), s. 719-724.
  • 271. H. Van Swygenhoven, P.M. Derlet, A. Froseth, Slacking fault energies and slip in nanocrystalline metals, Nature Mater., v. 3(2004), s. 399-403.
  • 272. A.G. Froseth, P.M. Derlet, H. Van Swygenhoven, Vicinal twin boundaries providing dislocation sources in nanocrystalline Al, Scripta Mater., v. 54(2006), s. 477-481.
  • 273. X.Z. Liao, F. Zhou, E.J. Lavernia, S.G. Srinivasan, M.I. Baskes, D.W. He, Y.T. Zhu, Deformation mechanism in nanocrystalline Al: Partial dislocation slip. Applied Phys. Lett., v. 83(2003), s. 632-634.
  • 274. X.Z. Liao, S.G. Srinivasan, Y.H. Zhao. M.I. Baskes, Y.T. Zhu, F. Zhou, E.J. Lavernia, H.F. Xu, Formation mechanism of wide stacking faults in nanocrystalline Al, Appl. Phys. Lett., v. 84(2004), s. 3564-3566.
  • 275. J.Y. Huang, X.Z. Liao, Y.T. Zhu, F. Zhou, E.J. Lavernia, Grain boundary structure of nanocrystalline Cu processed by cryomilling, Phil. Mag., v. 83(2003), s. 1407-1419.
  • 276. X.Z. Liao, Y.H. Zhao, S.G. Srinivasan, Y.T. Zhu, R.Z. Valiev, D.V. Gunderov, Deformation twinning in nanocrystalline copper at room temperature and low strain rate, Appl. Phys. Lett., v. 84(2004), s. 592-594.
  • 277. X.Z. Liao, Y.H. Zhao, Y.T. Zhu, R.Z. Valiev, D.V. Gunderov, Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion, J. Appl. Phys., v. 96(2004), s. 636-640.
  • 278. D.X. Li, D.H. Ping, J.Y. Huang, Y.D. Yu, H.Q. Ye, Microstructure and composition analysis of nanostructured materials using HREM and FEG-TEM, Micron, v. 31(2000), s. 581-586.
  • 279. X.L. Wu, Y. Qi, Y.T. Zhu, Partial mediated slips in nanocrystalline Ni at high strain rate, Appl. Phys. Lett., v. 90(2007), s. 221911-1-221911-3.
  • 280. M.A. Haque, M.T.A. Saif, Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study, Proc. of the National Academy of Sciences of the United States of America (PNAS), v. 101(2004), s. 6335-6340.
  • 281. X. Mao, L. Qiao, On the nanocrack nucleation and propagation mechanisms of Fe3Al intermetallics, Acta Mater., v. 44(1996), s. 2327-2335.
  • 282. X. Mao, L. Qiao, X. Li, In-situ transmission electron microscope study on nanocrack nucleation and growth of intermetallic alloy, Scripta Mater., v. 4-5(1998), s. 519-525.
  • 283. H. Van Swygenhoven, J.R. Weertman, Deformation in nanocrystalline metals, Mater. Today, v. 9(2006), s. 24-31.
  • 284. Y.M. Wang. E. Ma, On the origin of ultrahigh cryogenic strength of nanocrystalline metals, Appl. Phys. Lett., v. 85(2004), s. 2750-2752.
  • 285. J.C.M. Li, Petch relation and grain boundary sources. Trans. Metall. Soc. AIME, v. 227(1963), s. 239-247.
  • 286. D.E. Spearot, K.I. Jacob, D.L. McDowell, Nucleation of dislocations from [0 0 1] bicrystal interfaces in aluminum, Acta Mater., v. 53(2005), s. 3579-3589.
  • 287. D.E. Spearot, K.I. Jacob, D.L. McDowell, Dislocation nucleation from bicrystal interfaces with dissociated structure, Int. J. Plasticity, v. 23(2007), s. 143-160.
  • 288. F. Sansoz, J.F. Molinari, Mechanical behavior of ? tilt grain boundaries in nanoscale Cu and Al: A quasicontinuum study, Acta Mater., v. 53(2005), s. 1931-1944.
  • 289. D.H. Warner, F. Sansoz, J.F. Molinari, Atomistic based continuum investigation of plastic deformation in nanocrystalline copper, Int. J. Plasticity, v. 22(2006), s. 754-774.
  • 290. L. Capolungo, D.E. Spearot, M. Cherkaoui, D.L. McDowell, J. Qu, K.I. Jacob, Dislocation nucleation from bicrystal interfaces and grain boundary ledges: Relationship to nanocrystalline deformation, J. Mech. Phys. Solids, v. 55(2007), s. 2300-2327.
  • 291. H. Van Swygenhoven, M. Spaczer, A. Caro, D. Farkas, Competing plastic deformation mechanisms in nanophase metals, Phys. Rev. B, v. 60(1999), s. 22-25.
  • 292. V. A. Lubarda, M.S. Schneider, D.H. Kalantar, B.A. Remington, M.A. Meyers. Void growth by dislocation emission, Acta Mater., v. 52(2004), s. 1397-1408.
  • 293. X.Z. Liao, F. Zhou, E.J. Lavernia, D.W. He, Y.T. Zhu, Deformation twins in nanocrystalline Al, Appl. Phys. Lett., v. 83(2003), s. 5062-5064.
  • 294. Y.T. Zhu, X.Z. Liao, S.G. Srinivasan, Y.H. Zhao, M.I. Baskes, F. Zhou, E.J. Lavernia, Nucleation and growth of deformation twins in nanocrystalline aluminum. Appl. Phys. Lett., v. 85(2004), s. 5049-5051.
  • 295. X.L. Wu, Y.T. Zhu, Partial-dislocation-mediated processes in nanocrystalline Ni with nonequilibrium grain boundaries, Appl. Phys. Lett., v. 86(2006), s. 031922-1-031922-3.
  • 296. Y.T. Zhu, X.Z. Liao, S.G. Srinivasan, E.J. Lavernia, Nucleation of deformation twins in nanocrystalline face-centered-cubic metals processed by severe plastic deformation, J. Appl. Phys., v. 98(2005), s. 034319-1-034319-8.
  • 297. V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter, Deformation twinning in nanocrystalline Al by molecular-dynamics simulation, Acta Mater., v. 50(2002), s. 5005-5020.
  • 298. A. Froseth, H. Van Swygenhoven, P.M. Derlet, The influence of twins on the mechanical properties of nc-Al, Acta Mater., v. 52(2004), s. 2259-2268.
  • 299. A.A. Salem, S.R. Kalidindi, R.D. Doherty, Strain hardening of titanium: role of deformation twinning. Acta Mater., v. 51(2003), s. 4225-4237.
  • 300. A.A. Karimpoor, U. Erb, K.T. Aust, G. Palumbo, High strength nanocrystalline cobalt with high tensile ductility, Scripta Mater., v. 49(2003), s. 651-656.
  • 301. F. Dalla Torre, H. Van Swygenhoven, M. Victoria, Nanocrystalline electrodeposited Ni: microstructure and tensile properties, Acta Mater., v. 50(2002), s. 3957-3970.
  • 302. E. Thiele, R. Klemm, L. Hollang, C. Holste. N. Schell, H. Natter, R. Hempelmann, An approach to cyclic plasticity and deformation-induced structure changes of electrodeposited nickel, Mater. Sci. Engn. A, v. 390(2005), s. 42-51.
  • 303. F. Ebrahimi, G.R. Bourne, M.S. Kelly, T.E. Matthews, Mechanical Properties of Nanocrystalline Nickel Produced by Electrodeposition, Nanostruct. Mater., v. 11(1999), s. 343-350.
  • 304. Y.M. Wang, S. Cheng, Q.M. Wei, E. Ma, T.G. Nieh, A. Hamza, Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni, Scripta Mater., v. 51 (2004), s. 1023-1028.
  • 305. P.C. Millett, R.P. Selvam, A. Saxena, Improving grain boundary sliding resistance with segregated dopants, Mater. Sci. Engn. A, v. 431(2006), s. 92-99.
  • 306. W.M. Yin, S.H. Whang, Creep in Boron-doped Nanocrystalline Nickel. Scripta Mater., v. 44(2001), s. 569-574.
  • 307. W.M. Yin, S.H. Whang, R.A. Mirshams, Effect of interstitials on tensile strength and creep in nanostructured Ni, Acta Mater., v. 53(2005), s. 383-392.
  • 308. H. Iwasaki, K. Higashi, T.G. Nieh, Tensile deformation and microstructure of a nanocrystalline Ni-W alloy produced by electrodeposition, Scripta Mater., v. 50(2004), s. 395-399.
  • 309. X.Y. Qin, S.H. Cheong, J.S. Lee, Tensile behavior of nanocrystalline Ni-Fe alloy, Mater. Sci. Engn. A, v. 363(2003), s. 62-66.
  • 310. F. Ebrahimi, Z. Ahmed, H. Li, Effect of stacking fault energy on plastic deformation of nanocrystalline face-centered cubic metals, Appl. Phys. Lett., v. 85(2004), s. 3749-3751.
  • 311. H. Li, F. Ebrahimi, Tensile behavior of a nanocrystalline Ni-Fe alloy, Acta Mater., v. 54(2006), s. 2877-2886.
  • 312. H. Wei, G.D. Hibbard, G. Palumho, U. Erb. The effect of gauge volume on the tensile properties of nanocrystalline electrode posits, Scripta Mater., v. 57(2007), s. 996-999.
  • 313. L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Ultrahigh Strength and High Electrical Conductivity in Copper, Science, v. 304(2004), s. 422-426.
  • 314. L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, S. Suresh, Nano-sized twins induce high rate sensitivity of flow stress in pure copper, Acta Mater., v. 53(2005), s. 2169-2179.
  • 315. Y.F. Shen, L. Lu, M. Dao, S. Suresh, Strain rate sensitivity of Cu with nanoscale twins, Scripta Mater., v. 55(2006), s. 319-322.
  • 316. M. Dao, L. Lu, Y.F. Shen, S. Suresh, Strength, strain-rate sensitivity and ductility of copper with nanoscale twins, Acta Mater., v. 54(2006), s. 5421-5432.
  • 317. C. Schmidt, F. Ernst, M.W. Finnis, V. Vitek, Prediction and Observation of the bcc Structure in Pure Copper at a ?3 Grain Boundary, Physical Rev. Lett., v. 75(1995), s. 2160-2163.
  • 318. J.R. Rice, Dislocation nucleation from a crack tip: An analysis based on the Peierls concept, J. Mech. Phys. Solids, v. 40(1992), s. 239-271.
  • 319. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, New York, 1996.
  • 320. M.A. Meyers, K.K. Chawla, Mechanical Metallurgy: Principles and Applications, Prentice Hall Inc., Englewood Cliffs, New Jersey, 1984.
  • 321. M.S. Duesbery, V. Vitek, Overview No 128, Plastic Anisotropy in B.C.C. Transition Metals, Acta Mater., v. 46(1998), s. 1481-1492.
  • 322. J.A. Zimmerman, H. Gao, F. F Abraham. Generalized stacking fault energies for embedded atom FCC metals, Modelling Simul. Mater. Sci. Eng., v. 8(2000), s. 103-115.
  • 323. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B, v. 63(2001), s. 224106-1-224106-15.
  • 324. M.J. Mehl, D.A. Papaconstantopoulos, N. Kioussis, M. Herbranson, Tight-binding study of stacking fault energies and the Rice criterion of ductility in the fcc metals, Phys. Rev. B, v. 61(2000), s. 4894-4897.
  • 325. O.N. Mryasov, A.J. Freeman, Fracture and dislocation properties: an ab initio electronic structure approach, Mater. Sci. Engn. A, v. 260(1999), s. 80-93.
  • 326. D.J. Siegel, Generalized stacking fault energies, ductilities, and twinnabilities of Ni and selected Ni alloys, Appl. Phys. Lett., v. 87(2005), s. 121901-1-121901-3.
  • 327. S. Kibey, J.B. Liu, D.D. Johnson, H. Sehitoglu, Generalized planar fault energies and twinning in Cu-Al alloys, Appl. Phys. Lett., v. 89(2006), s. 191911-1-191911-3.
  • 328. P. Lazar, R. Podloucky, Ab initio study of the mechanical properties of NiAl microalloyed by X = Cr,Mo,Ti,Ga, Phys. Rev. B, v. 73(2006), s. 104114-1-104114-8.
  • 329. S. Kibey, J.B. Liu, M.J. Curtis, D.D. Johnson, H. Sehitoglu, Effect of nitrogen on generalized stacking fault energy and stacking fault widths in high nitrogen steels, Acta Mater., v. 54(2006), s. 2991-3001.
  • 330. N.I. Medvedeva, Yu.N. Gornostyrev, A.J. Freeman, Solid solution softening in bcc Mo alloys: Effect of transition-metal additions on dislocation structure and mobility, Phys. Rev. B, v. 72(2005), s. 134107-1-134107-9.
  • 331. B.Y.C. Wu, P.J. Ferreira, C.A. Schuh, Nanostructured Ni-Co Alloys with Tailorable Grain Size and Twin Density, Metall. Mater. Trans. A, v. 6A(2005), s. 1927-1936.
  • 332. F.R.N. Nabarro, Deformation of crystals by the motion of single ions, in: Report of a Conf. on the Strength of Solids, The Physics Soc., London, 1948, s. 75-90.
  • 333. C. Herring, Diffusional Viscosity of a Polycrystalline Solid, J. Appl Phys., v. 21(1950), s. 437-445.
  • 334. R.L. Coble, A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials, J. Appl, Phys., v. 34(1963), s. 1679-1682.
  • 335. R. Wurschum, U. Brossmann, H.E. Schaefer, Diffusion in Nanocrystalline Materials, in: Carl C. Koch (red.), Nanostructured Materials, Processing, Properties and Potential Applications, Noyes Publications, Wiliam Andrew Publishing, New York, 2002, s. 267-299.
  • 336. S. Sakai, H. Tanimoto, H. Mizubayashi, Mechanical Behaviour of High-Density Nanocrystalline Gold Prepared by Gas Deposition Method, Acta Mater., v. 47(1999), s. 211-217.
  • 337. G.J. Fan, H. Choo, P.K. Liaw, E.J. Lavernia, A model for the inverse Hall-Petch relation of nanocrystalline materials, Mater. Sci. Engn. A, v. 409(2005), s. 243-248.
  • 338. R.C. Gifkins, Diffusional Creep Mechanisms, J. Am. Ceram. Soc., v. 51(1968), s. 69-72.
  • 339. R. Raj, M.F. Ashby, On Grain Boundary Sliding and Diffusional Creep, Metall. Trans., v. 2(1971), s. 1113-1127.
  • 340. H. Van Swygenhoven, P.M. Derlet, Grain-boundary sliding in nanocrystalline fcc metals, Phys. Rev. B, v. 64(2001), s. 224105-1-224105-9.
  • 341. J. Schiotz, Atomic-scale modeling of plastic deformation of nanocrystalline copper, Scripta Mater., v. 51(2004), s. 837-41.
  • 342. X.Y. Qin, X.G. Zhu, J.S. Lee, The temperature influence on the microscopic characteristics of plastic deformation morphologies in nanocrystalline Ni-Fe investigated with atomic force microscopy, Scripta Mater., v. 50(2004), s. 489-494.
  • 343. A. Vinogradov, S. Hashimoto, V. Patlan, K. Kitagawa, Atomic force microscopic study on surface morphology of ultra-fine grained materials after tensile testing. Mater. Sci. Engn. A, v. 319-321(2001), s. 862-866.
  • 344. P.M. Derlet, H. Van Swygenhoven, The role played by two parallel free surfaces in the deformation mechanism of nanocrystalline metals: A molecular dynamics simulation. Phil. Mag. A, v. 82(2002), s. 1-15.
  • 345. Z. Pakieła, J.W. Wyrzykowski, Effect of Grain Boundary Phenomena on the Softening of 316L Austenitic Steel at High Temperatures, Mater. Sci. Engn. A, v. 131(1991), s. 77-84.
  • 346. M.F. Ashby, R.A. Verrall, Diffusion-accommodated flow and superplasticity, Acta Metall., v. 21(1973), s. 149-163.
  • 347. J. Markmann, P. Bunzel, K.W. Liu, K.A. Padmanabhan, R. Birringer, H. Gleiter, J. Weissmuller, Microstructure evolution during rolling of inert-gas condensed palladium, Scripta Mater., v. 49(2003), s. 637-645.
  • 348. V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter, Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulations. Acta Mater., v. 50(2002), s. 61-73.
  • 349. F. Sansoz, J.F. Molinari, Incidence of atom shuffling on the shear and decohesion behavior of a symmetric till grain boundary in copper, Scripta Mater., v. 50(2004), s. 1283-1288.
  • 350. C. Molteni, N. Marzari, M.C. Payne, V. Heine, Sliding Mechanisms in Aluminum Grain Boundaries, Phys. Rev. Lett., v. 79(1997), s. 869-872.
  • 351. C. Molteni, G.P. Francis, M.C. Payne, V. Heine, Grain boundary sliding: an ab initio simulation, Mater. Sci. Engn. B, v. 37(1996), s. 121-126.
  • 352. C. Molteni, Modelling grain boundary sliding from first principles. Mater. Sci. Forum, v. 447-448(2004), s. 11-18.
  • 353. J.C Hamilton, S.M. Foiles, First-principles calculations of grain boundary theoretical shear strength using transition state finding to determine generalized gamma surface cross sections, Phys. Rev. B, v. 65(2002), s. 064104-1-064104-5.
  • 354. M. Shiga, W. Shinoda, Stress-assisted grain boundary sliding and migration at finite temperature: A molecular dynamics study, Phys. Rev. B, v. 70(2004), s. 054102-1-054192-6.
  • 355. C.A. Schuh, T.G. Nieh, H. Iwasaki, The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni, Acta Mater., v. 51(2003), s. 431-443.
  • 356. P. Keblinski, D. Wolf, S.R. Phillpot, H. Gleiter, Structure of grain boundaries in nanocrystalline palladium by molecular dynamics simulation, Scripta Mater., v. 41(1999), s. 631-636.
  • 357. H. Van Swygenhoven, D. Farkas, A. Caro, Grain-boundary structures in polycrystalline metals at the nanoscale, Phys. Rev. B, v. 62(2000), s. 831-838.
  • 358. H. Van Swygenhoven, A. Caro, D. Farkas, A molecular dynamics study of polycrystalline fee metals at the nanoscale: Grain boundary structure and its influence on plastic deformation, Mater. Sci. Engn. A, v. 309-310(2001), s. 440-444.
  • 359. H. Van Swygenhoven, A. Caro, Molecular dynamics computer simulation of nanophase Ni: Structure and mechanical properties, Nanostruct. Mater., v. 9(1997), s. 669-672.
  • 360. J.W. Cahn, J.E. Taylor, A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation, Acta Mater., v. 52(2004), s. 4887-4898.
  • 361. E.A. Marquis, J.C. Hamilton, D.L. Medlin, F. Leonard, Finite-Size Effects on the Structure of Grain Boundaries, Phys. Rev. Lett., v. 93(2004), s. 156101-1-156101-4.
  • 362. Y.J. Wei, L. Anand, Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals, J. Mech. Phys. Solids, v. 52(2004), s. 2587-2616.
  • 363. A. Hasnaoui, H. Van Swygenhoven, P.M. Derlet, Dimples on Nanocrystalline Fracture Surfaces As Evidence for Shear Plane Formation, Science, v. 300(2003), s. 1550-1552.
  • 364. D. Fuks, K. Mundim, V. Liubich, S. Dorfman,J. Felsteiner, G. Borstel, Modeling of the sliding resistance of ?3<111> tungsten grain boundary: influence of boron additive, Composites: Part A, v. 32(2001), s. 591-594.
  • 365. G.L. Krasko, Effect of impurities on the electronic structure of grain boundaries and intergranular cohesion in iron and tungsten, Mater. Sci. Engn. A, v. 234-236(1997), s. 1071-1074.
  • 366. G.L.Krasko, G.B. Olson, Effect of boron, carbon, phosphorus and sulphur on intergranular cohesion in iron, Solid State Communications, v. 76(1990), s. 247-251.
  • 367. L.G. Wang, C.Y. Wang, First-principles calculatios of energies of impurities and dopping effect at grain boundaries in nickel, Mater. Sci. Engn. A, v. 234-236(1997), s. 521-524.
  • 368. R. Yang, Y.M. Wang, R.Z. Huang, H.Q. Ye, C.Y. Wang, First-principles study on the effect of Mn and N on the cohesion of a ?-iron grain boundary, Phys. Rev. B, v. 65(2002), s. 094112-1-094112-8.
  • 369. S.-Y. Wang, Ch.-Y. Wang, D.-L. Zhao, Effect of double boron impurities on the ?-iron grain boundary cohesion, J. of Alloys and Compounds, v. 368(2004), s. 308-311.
  • 370. P. Lejcek, S. Hofmann, A. Krajnikov, Chemical aspects of brittle fracture: Grain boundary segregation, Mater. Sci. Engn. A, v. 234-236(1997), s. 283-286.
  • 371. F.A. McClintock, A.S. Argon (red.), Mechanical Behavior of Materials, Addison Wesley Publ. Comp. Inc., New York, 1968.
  • 372. M. Blicharski, S. Dymek, M. Wróbel, Inhomogeneitics of Microstructure Evolved in Metals under Plastic Deformation, J. Mater. Processing Technology, v. 53(1995), s. 75-84.
  • 373. F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena. Pergamon, Oxford, 1995.
  • 374. D. Kuhlmann-Wilsdorf, Overview No 131, "Regular" Deformation Bands (DBs) and the LEDS Hypothesis, Acta Mater., v. 47(1999), s. 1697-1712.
  • 375. D. Kuhlmann-Wilsdorf, The theory of dislocation-based crystal plasticity, Phil. Mag. A, v. 79(1999), s. 955-1008.
  • 376. N. Hansen, X. Huang, D.A. Hughes, Microstructural evolution and hardening parameters, Mater. Sci. Engn. A, v. 317(2001), s. 3-11.
  • 377. M.A. Meyers, V. F. Nesterenko, J.C. LaSalvia, Q. Xue, Shear localization in dynamic deformation of materials: microstructural evolution and self-organization, Mater. Sci. Engn. A, v. 317(2001), s. 204-225.
  • 378. S.M. Walley, Shear Localization: A Historical Overview, Metall. Mater. Trans. A, v. 38A(2007), s. 2629-2654.
  • 379. H. Tresca, On further application of the flow of solids, Proc. Inst. Mech. Engrs., v. 30(1878), s. 301-345.
  • 380. C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Overview No 144, Mechanical behavior of amorphous alloys, Acta Mater, v. 55(2007), s. 4067-4109.
  • 381. H.-H. Fu, D.J. Benson, M.A. Meyers, Computational description of nanocrystalline deformation based on crystal plasticity, Acta Mater., v. 52(2004), s. 4413-4425.
  • 382. L.E. Murr, E.A. Trillo, S. Pappu, C. Kennedy, Adiabatic shear bands and examples of their role in severe plastic deformation, J. Mater. Sci., v. 37(2002), s. 3337-3360.
  • 383. M.A. Meyers, Y.B. Xu, Q. Xue, M.T. Pérez-Prado, T.R. McNelley, Microstructural evolution in adiabatic shear localization in stainless steel, Acta Mater., v. 51(2003), s. 1307-1325.
  • 384. D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, R.Z. Valiev, Deformation behavior and plastic instabilities of ultrafine-grained titanium, Appl. Phys. Lett., v. 79(2001), s. 611-613.
  • 385. T.R. Malow, C.C. Koch, Mechanical properties in tension of mechanically attrited nanocrystalline iron by the use of the miniaturized disk bend test, Acta Mater., v. 46(1998), s. 6459-6473.
  • 386. D. Jia, K.T. Ramesh, E. Ma, L. Lu, K. Lu, Compressive behavior of an electrodeposited nanostructured copper at quasistatic and high strain rates, Scripta Mater., v. 45(2001), s. 613-620.
  • 387. H. Luo, L. Shaw, L.C. Zhang, D. Miracle, On tension/compression asymmetry of an extruded nanocrystalline Al-Fe-Cr-Ti alloy, Mater. Sci. Engn. A, v. 409(2005), s. 249-256.
  • 388. D. Pan, S. Kuwano, T. Fujita, M.W. Chen, Ultra-Large Room-Temperature Compressive Plasticity of a Nanocrystalline Metal, Nano Letters, v. 7(2007), s. 2108-2111.
  • 389. S. Hwang, C. Nishimura, Deformation Mechanism of Nanocrystalline Magnesium in Compression, Scripta Mater., v. 44(2001), s. 1507-1511.
  • 390. P.G. Sanders, J.A. Estman, J.R. Weertman, Elastic and tensile behavior of nanocrystalline copper and palladium, Acta Mater., v. 45(1997), s. 4019-4025.
  • 391. M. Legros, B.R. Elliott, M.N. Rittner, J.R. Weertman, K.J. Hemker, Microsample tensile testing of nanocrystalline metals, Phil Mag. A, v. 80(2000), s. 1017-1026.
  • 392. Y.M. Wang, K. Wang, D. Pan, K. Lu, K.J. Hemker. E. Ma, Microsample tensile testing of nanocrystalline copper, Scripta Mater., v. 48(2003), s. 1581-1586.
  • 393. R.M. Molak, Z. Pakieła, Mechanical Properties of Aluminium Processed by ECAP, Solid State Phenomena, v. 114(2006), s. 39-44.
  • 394. T. Roland, D. Retraint, K. Lu, J. Lu, Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment, Scripta Mater., v. 54(2006), s. 1949-1954.
  • 395. H. Mano, S. Kondo, A. Matsumuro, Microstructured surface layer induced by shot peening and its effect on fatigue strength, J. Japan Inst. Metals, v. 70(2006), s. 415-419.
  • 396. R.K. Nalla, I. Altenherger, U. Noster, G.Y. Liu, B. Scholtes, R.O. Ritchie, On the influence of mechanical surface treatments deep rolling and laser shock peening on the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures, Mater. Sci. Engn. A, v. 355(2003), s. 216-230.
  • 397. M.R. Stoudt, R.E. Ricker, R.C. Cammarata, The influence of a multilayered metallic coating on fatigue crack nucleation, Int. J. of Fatigue, v. 23(2001), s. 215-223.
  • 398. K.R. Sriraman, S. Ganesh Sundara Raman, S.K. Seshadri, Influence of crystallite size on the hardness and fatigue life of steel samples coated with electrodeposited nanocrystalline Ni-W alloys, Mater. Lett., v. 61(2007), s. 715-718.
  • 399. T. Hanlon, Y.N. Kwon, S. Suresh, Grain size effects on the fatigue response of nanocrystalline metals, Scripta Mater., v. 49(2003), s. 675-680.
  • 400. T. Hanlon, E.D. Tahachnikova, S. Suresh, Fatigue behavior of nanocrystalline metals and alloys, Int. J. of Fatigue, v. 27(2005), s. 1147-1158.
  • 401. B. Moser, T. Hanlon, K.S. Kumar, S. Suresh, Cyclic strain hardening of nanocrystalline nickel, Scripta Mater., v. 54(2006), s. 1151-1155.
  • 402. J. Xie, X. Wu, Y. Hong, Shear hands at the fatigue crack tip of nanocrystalline nickel, Scripta Mater., v. 57(2007), s. 5-8.
  • 403. S. Cheng, A.D. Stoica, X.-L. Wang, G.Y. Wang, H. Choo. P.K. Liaw, Fracture of Ni with grain-size from nanocrystalline to ultrafine scale under cyclic loading, Scripta Mater, v. 57(2007), s. 217-220.
  • 404. G.J. Fan, L.F. Fu, G.Y. Wang, H. Choo, P.K. Liaw, N.D. Browning, Mechanical behavior of a hulk nanocrystalline Ni-Fe alloy. J. of Alloys and Compounds, v. 434(2007), s. 298-300.
  • 405. A. Vinogradov, V.V. Stolyarov, S. Hashimoto, R.Z. Valiev, Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation. Mater. Sci. Engn. A,v. 318(2001), s. 163-173.
  • 406. S.R. Agnew, J.R. Weertman, Cyclic softening of ultrafine grain copper, Mater. Sci. Engn. A, v. 224(1998), s. 145-153.
  • 407. A. Vinogradov. Y. Kaneko, K. Kitagava, S. Hashimoto, V. Stolyarov, R. Valiev, Cyclic response of ultrafine-grained copper at constant plastic strain amplitude, Scripta. Metal., v. 36(1997), s. 1345-1351.
  • 408. A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa, V.I. Kopylov, Structure and properties of ultra-fine grain Cu-Cr-Zr alloy produced by equal-channel angular pressing, Acta Mater., v. 50(2002), s. 1639-1651.
  • 409. V. Patlan, A. Vinogradov, K. Higashi, K. Kitagawa, Overview of fatigue properties of fine grain 5056 Al-Mg alloy processed by equal-channel angular pressing, Mater. Sci. Engn. A, v. 300(2001), s. 171-182.
  • 410. H.-K. Kim, M.-I. Choi, Ch.-S. Chung, D.H. Shin, Fatigue properties of ultrafine grained low carbon steel produced by equal channel angular pressing, Mater. Sci. Engn. A, v. 340(2003), s. 243-250.
  • 411. H.J. Maier, P. Gabor, I. Karaman, Cyclic stres-strain response and low cycle fatigue damage in ultrafine grained copper, Mater. Sci. Engn. A, v. 410(2005), s. 457-461.
  • 412. H.J. Maier, P. Gabor, N. Gupta, I. Karaman, M. Haouaoui, Cyclic stress-strain response of ultrafine grained copper, Int. J. of Fatigue, v. 28(2006), s. 243-250.
  • 413. P.S. Pao, H.N. Jones, C.R. Feng, D.B. Witkin, E.J. Lavernia, Fatigue and fracture in bimodal Al 5083 in: Ultrafine Grained Materials IV, Y.T. Zhu, T.G. Langdon, Z. Horita, M.J. Zehetbauer, S.L. Semiatin, T.C. Lowe (red.), TMS, 2006, s. 331-336.
  • 414. R.A. Varin, L. Zbroniec, T. Czujko, Y.-K. Song, Fracture toughness of intermetallic compacts consolidated from nanocrystalline powders, Mater. Sci. Engn. A, v. 300(2000), s. 1-11.
  • 415. M.A. Morris-Munoz, A. Dodge, D.G. Morris, Structure, strength and toughness of nanocrystalline FeAl, Nanostruct. Mater., v. 11(1999), s. 873-875.
  • 416. S.H. Lee, S.U. Lee, K.I. Moon, K.S. Lee, A study on the improvement of the fracture toughness of L12-type Cu-added zirconium trialuminide intermetallics synthesized by mechanical alloying, Mater. Sci. Engn. A, v. 382(2004), s. 209-216.
  • 417. S.H. Lee, K.I. Moon, K.S. Lee, Enhancement of the fracture toughness of bulk L12-based (AlC12.5 at.% M)3Zr (MZCu, Mn) intermetallics synthesized by mechanical alloying, Intermetallics, v. 14(2006), s. 1-8.
  • 418. R.A. Mirshams, C.H. Xiao, S.H. Whang, W.M. Yin, R-Curve characterization of the fracture toughness of nanocrystalline nickel thin sheets, Mater. Sci. Engn, A, v. 315(2001), s. 21-27.
  • 419. Y. Gan, B. Zhou, Effect of grain size on the fracture toughness of nanocrystalline FeMoSiB, Scripta Mater., v. 45(2001), s. 625-630.
  • 420. B.Q. Han, F.A. Mohamed, C.C. Bampton, E.J. Lavernia, Improvement of Toughness and Ductility of a Cryomilled Al-Mg Alloy via Microstructural Modification, Metal. Mater. Trans. A, v. 36A(2005), s. 2081-2091.
  • 421. G.E. Fougere, L. Riester, M. Ferber, J.R. Weertman, R.W. Siegel, Young's modulus of nanocrystalline Fe measured by nanoindentation, Mater. Sci. Engn. A, v. 204(1995), s. 1-6.
  • 422. J.R. Weertman, Hall-Petch strengthening in nanocrystalline metals, Mater. Sci. Eng. A, v. 166(1993), s. 161-167.
  • 423. Y. Zhou, U. Erb, K.T. Aust, G. Palumbo, The effects of triple functions and grain boundaries on hardness and Young's modulus in nanostructured Ni-P, Scripta Mater., v. 48(2003), s. 825-830.
  • 424. H. Huang, F. Spaepen, Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers, Acta Mater., v. 48(2000), s. 3261-3269.
  • 425. J. Friedel, Dislocations, Pergamon, Oxford, 1964.
  • 426. J.C. Gibeling, W.D. Nix, Observations of Anelastic Backflow Following Stress Reductions During Creep of Pure Metals, Acta Metall., v. 29(1981), s. 1769-1784.
  • 427. J. Rajagopalan, J. Han, M.T. Saif, Plastic Deformation Recovery in Freestanding Nanocrystalline Aluminum and Gold Thin Films, Science, v. 315(2007), s. 1831-1834.
  • 428. H. Tanimoto, S. Sakai, H. Mizubayashi, Anelasticity of nanocrystalline metals, Mater. Sci. Engn. A, v. 370(2004), s. 135-141.
  • 429. C.C. Koch, D.G. Morris, K. Lu, K.A. Inoue, Ductility of nanostructured materials, MRS Bull., v. 24(1999), s. 54-58.
  • 430. J.R. Weertman, D. Farkas, K. Hemker, H. Kung, M. Mayo, R. Mitra, H. Van Swygenhoven, Structure and mechanical behavior of bulk nanocrystalline materials, MRS Bull., v. 24(1999), s. 44-50,
  • 431. P.G. Sanders, C.J. Youngdahl, J.R. Weertman, The strength of nanocrystalline metals with and without flaws, Mater. Sci. Engn. A, v. 234-236(1997), s. 77-82.
  • 432. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, T.C. Love, Paradox of strength and ductility in metals processed by severe plastic deformation, J. Mater. Res., v. 17(2002), s. 5-8.
  • 433. C.C. Koch, Optimization of strength and ductility in nanocrystalline and ultrafine grained metals, Scripta Mater., v. 49(2003), s. 657-662.
  • 434. Y.M. Wang, E. Ma, Three strategies to achieve uniform tensile deformation in a nanostructured metal, Acta Mater., v. 52(2004), s. 1699-1709.
  • 435. A. Drużycka-Wiencek, M. Suś-Ryszkowska, Z. Pakieła, K.J. Kurzydłowski, Struktura i właściwosci stali austenitycznej typu 316L po dużym odkształceniu plastycznym, Archiwum Nauki o Materiałach, v. 24(2003), s. 533-546.
  • 436. K.M. Youssef, R.O. Scattergood, K.L. Murty, J.A. Horton, C.C. Koch, Ultrahigh strength and high ductility of bulk nanocrystalline copper, Appl. Phys. Lett., v. 87(2005), s. 091904-1-091904-3.
  • 437. A.G. Considere, Memoire sur l'emploi du fer el de l'acier dans les constructions, Annales des Ponts et Chausses, (ser. 6), v. 9(1885), s. 574-575.
  • 438. K.S. Havner, On the onset of necking in the tensile test, Int. J. Plasticity, v. 20(2004), s. 965-978.
  • 439. E.W. Hart, Theory of the tensile test, Acta Metall., v. 15(1967), s. 351-355.
  • 440. H.P. Stuwe, Examples of Strain Localisation, in: Localization and Fracture Phenomena in Inelastic Solids, P. Perzyna (red.), Springer-Verlag, Wien, 1998, s. 1- 21.
  • 441. P. Perzyna, K. Korbel, Analysis of the influence of the substructure of a crystal on shear band localization phenomena of plastic deformation, Mechanics of Mater., v. 24( 1996), s. 141-158.
  • 442. A. Korbel, Structural and Mechanical Aspects of Homogeneous and non-Homogeneous Deformation in Solids, in: Localization and Fracture Phenomena in Inelastic Solids, P. Perzyna (red.), Springer-Verlag, Wien, 1998, s. 21-98.
  • 443. H. Petryk, Plastic instability: Criteria and computational approaches, Archives of Comput. Methods in Engn., v. 4(1997), s. 111-151.
  • 444. Z.S. Basinski, M.S. Szczerba, J.D. Embury, Tensile instability in face-centred cubic materials, Phil. Mag. A, v. 76(1997), s. 743-752.
  • 445. R.J. Asaro, Geometrical Effects in the Inhomogencous Deformation of Ductile Single Crystals, Acta Metall., v. 27(1979), s. 445-453.
  • 446. A. Korbel, P. Martin, Microstructural events of macroscopic strain localization in prestrained tensile specimens. Acta Metall., v. 36(1987), s. 2575-2586.
  • 447. A. Korbel, M. Richert, Formation of Shear Bands During Cyclic Deformation of Aluminium, Acta Metall., v. 33(1985), s. 1971-1978.
  • 448. M. Li, O. Richmond, Intrinsic instability and nonuniformily of plastic deformation, Int. J. Plasticity, v. 8-9(1997), s. 765-784.
  • 449. M.F. Horstemeyer, M.I. Baskes, S.J. Plimpton, Computational nanoscale plasticity simulations using embedded atom potentials, Theoret. Appl. Fracture Mechanics, v. 37(2001), s. 49-98.
  • 450. R. Komanduri. N. Chandrasekaran, L.M. Raff, Molecular Dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel. Int. J. Mech. Sci., v. 43(2001), s. 2237-2260.
  • 451. Z. Marciniak, K. Kuczyński, Limit strains in processing of stretch forming sheet metal. Int. J. Mech. Sci., v. 9(1967), s. 609-620.
  • 452. R. Abeyarante, N. Triantafyllidis, Emergence of Shear Bands in Plane Strain, Int. J. Solids Struct., v. 17(1981), s. 1113-1134.
  • 453. J.Garstone, R.W.K. Honeygombe, G. Greetham, Easy glide of cubic metal crystals, Acta Metall., v. 4(1956), s. 485-494.
  • 454. S. Brochard, P. Beauchamp, J. Grilhe, Stress concentration near a surface step and shear localization, Phys. Rev. B, v. 61(2000), s. 8707-8713.
  • 455. S. Brochard, P. Beauchamp, J. Grilhe, Dislocation nucleation from surface steps: atomistic simulation in aluminium, Phil. Mag. A, v. 80(2000), s. 503-524.
  • 456. Ch. Li, G. Xu, Geometrical effect on dislocation nucleation at crystal surface nanostructures, Engn. Analysis with Boundary Elements, v. 31(2007), s. 443-450.
  • 457. Y. Liu, E. Van der Giessen, A. Needleman, An analysis of dislocation nucleation near a free surface, Int. J. Solids Struct., v. 44(2007), s. 1719-1732.
  • 458. G.E. Packard, C.A. Schuh, Initiation of shear bands near a stress concentration in metallic glass, Acta Mater., v. 55(2007), s. 5348-5358.
  • 459. G.I. Taylor, The Mechanism of Plastic Deformation of Crystals, Part I. Theoretical. Part II. Comparison with Observations, Proc. Roy. Soc. A, v. 145(1934), s. 362-404.
  • 460. P.B. Hirsh (red.). Physics of Metals, vol. 2, Cambridge University Press, Cambridge, 1975.
  • 461. U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case. Prog. Mater. Sci. v. 48(2003), s. 171-273.
  • 462. D. Wolf, V. Yamakov, S.R. Phillpot, A. Mukherjee, H. Gleiter, Deformation of nanocrystalline materials by molecular-dynamics simulation: Relationship to experiments? Acta Mater., v. 53(2005), s. 1-40.
  • 463. Z. Pakieła, M. Suś-Ryszkowska, A. Drużycka-Wiencek. K.J. Kurzydłowski, Microstructure and mechanical properties of nanostructured metals processed by severe plastic deformation. Proc. of 7th Int. Conf. on Nanostructured Materials, June 20-24, Wiesbaden/Germany, 2004, s. 177.
  • 464. Y.H. Zhao, X.Z. Liao, Y.T. Zhu, Z. Horita, T.G. Langdon, Influence of stacking fault energy on nanostructure formation under high pressure torsion, Mater. Sci. Engn. A, v. 410-411(2005), s. 188-193.
  • 465. Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita, T.G. Langdon, Influence of stacking fault energy on the minimum grain size achieved in severe plastic deformation, Mater. Sci. Engn. A, v. 463(2007), s. 22-26.
  • 466. Y.H. Zhao, X.Z. Liao, Z. Horita, T.G. Langdon, Y.T. Zhu, Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu-Zn alloys. Mater. Set. Engn. A, w druku.
  • 467. J. Mizera, P. Prusko, Optymalizacja mikrostruktury stopów z dodatkiem i na osnowie srebra pod kątem ich zastosowań we współczesnej technice, w: Nowe materiały na osnowie srebra z i z dodatkiem srebra do zastosowań w nowoczesnych dziedzinach gospodarki. PBZ-KBN-103/T08/2003, Instytut Metali Nieżelaznych, Gliwice, 2007, s. 47-64.
  • 468. Y. Wang, M. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metal, Nature, v. 419(2002), s. 912-915.
  • 469. Z. Pakieła i inni, Mechanizmy odkształcenia plastycznego materiałów w obszarze strefy pękania, Sprawozdanie z projektu badawczego, Wydział Inżynierii Materiałowej PW, Warszawa, 2005.
  • 470. D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, B.J. Lavernia, Al-Mg alloy engineered with bimodal grain size for high strength and increased ductility, Scripta Mater., v. 49(2003), s. 297-302.
  • 471. G.J. Fan, H. Choo, P.K. Liaw, E.J. Lavernia, Plastic deformation and fracture of ultrafine-grained Al-Mg alloys with a bimodal grain size distribution, Acta Mater., v. 54(2006), s. 1759-1766.
  • 472. M.W. Grabski, R. Korski, Grain Boundaries as Sinks for Dislocations, Phil. Mag., v. 22(1970), s. 707-715.
  • 473. A.A. Fedorov, M.Y. Gutkin, I.A. Ovid'ko, Transformations of grain boundary dislocation pile-ups in nano- and poly crystalline materials, Acta Mater., v. 51(2003), s. 887-898.
  • 474. S.V. Bobylev, M.Yu. Gutkin, I. A. Ovid'ko, Transformations of grain boundaries in deformed nanocrystalline materials, Acta Mater., v. 5(2004), s. 3793-3805.
  • 475. I.A. Ovid'ko, A.G. Sheinerman. Special strain hardening mechanism and nanocrack generation in nanocrystalline materials, Appl. Phys. Lett., v. 90(2007), s. 171927-1-171927-3.
  • 476. H.J. Frost, M.F. Ashby, Deformation Mechanism Maps, Pergamon Press. Oxford, 1982.
  • 477. L. Lu, S.X. Li, K. Lu, An abnormal strain rate effect on tensile behavior in nanocrystalline copper, Scripta Mater., v. 45(2001), s. 1163-1169.
  • 478. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh, Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel, Acta Mater., v. 51(2003), s. 5159-5172.
  • 479. Q. Wei, S. Cheng, K.T. Ramesh, E. Ma, Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals, Mater. Sci. Engn. A, v. 381(2004), s. 71-79.
  • 480. Y.M. Wang, E. Ma, Strain hardening, strain rate sensitivity, and ductility of nanostructured metals, Mater. Sci. Engn. A, v. 375-377(2004), s. 46-52.
  • 481. Y.M. Wang, A.V. Hamza, E. Ma, Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni, Acta Mater., v. 54(2006), s. 2715-2726.
  • 482. R.J. Asaro, S. Suresh, Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins, Acta Mater., v. 53(2005), s. 3369-3382.
  • 483. M.F. Horstemeyer, M.I. Baskes, S.J. Plimpton, Length Scale and Time Scale Effects on the Plastic Flow of FCC Metals, Acta Mater., v. 49(2001), s. 4363-4374.
  • 484. V. E. Panin, Synergetic principles of physical mesomechanics, Theoret. Appl. Fracture Mechanics, v. 37(2001), s. 261-298.
  • 485. A. Needleman, Computational mechanics at the mesoscale, Acta Mater., v. 48(2000), s. 105-124.
  • 486. F.F. Abraham, R. Walkup, H. Gao, M. Duchaineau, T.D. De La Rubia, M. Seager, Simulating materials failure by using up to one billion atoms and the world's fastest computer: Work-hardening, Proc. of the National Academy of Sciences of the United States of America PNAS, v. 99(2002), s. 5783-5787.
  • 487. P.V. Makarow, Localized deformation and fracture of polycrystals at mesolevel, Theoret. Appl. Fract. Mechanics, v. 33(2000), s. 23-30.
  • 488. R.A. Carolan, M. Egashira, S. Kishimoto, N. Shinya, Effect of grain boundary deformation on the creep micro-deformation of copper, Acta Metall. Mater., v. 40(1992), s. 1629-1636.
  • 489. S. Kishimoto, X. Huimin, N. Shinya, Electron moire method and its application to micro-deformation measurement, Optics and Laser Engn., v. 34(2000), s. 1-14.
  • 490. K. Patorski, M. Kujawińska, L. Sałbut, Interferometria laserowa, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2005.
  • 491. J. Gonzalez, W.G. Knauss, Strain inhomogeneity and discontinuous crack growth in a particulate composite, J. Mech. Phys. Solids, v. 46(1998), s. 1981-1995.
  • 492. W.H. Peters, W.F. Ranson, Digital Imaging Techniques in Experimental Stress Analysis, Opt. Engn., v. 21(1982), s. 427-431.
  • 493. T. Brynk, Zastosowanie metody cyfrowej korelacji obrazów do badania niejednorodności odkształcenia materiałow metalicznych, Praca magisterska pod kierunkiem Z. Pakieły, Wydział Inżynierii Materiałowej PW, Warszawa, 2006.
  • 494. M. Rasiński, Wpływ parametrów procesu przeciskania przez kanał kątowy na propagację pęknięć zmęczeniowych w stopie Al 5483, Praca magisterska pod kierunkiem Z. Pakieły, Wydział Inżynierii Materiałowej PW, Warszawa, 2006.
  • 495. K. Sosnowska, Mechanical Properties of Lead-free Solders and Solder Joints, Praca magisterska pod kierunkiem Z. Pakieły i J. Janczak-Rusch, Wydział Inżynierii Materiałowej PW, Warszawa 2006.
  • 496. M. Szańkowska, T. Brynk, R. Molak, Z. Pakieła, Badania ilościowe odkształcenia plastycznego mikropróbek metali. Mat. konf. XXXIII Szkoły Inżynierii Materiałowej, Kraków-Ustroń, 2005. s. 53-57.
  • 497. M. Rosiński, E. Fortuna, A. Michalski, Z. Pakieła, K.J. Kurzydłowski, W/Cu composites produced by pulse plasma sintering technique (PPS), Fusion Engn. and Design, v. 82(2007), s. 2621-2626.
  • 498. R.M. Molak, M. Kartal, Z. Pakieła, W. Manaj, M.Turski, S. Hiller, S. Gungor, L. Edwards, K.J. Kurzydłowski, Use of Micro Tensile Test Samples in Determining the Remnant life of Pressure Vessel Steels, Applied Mechanics and Materials, v. 7-8(2007), s. 187-194.
  • 499. D.T. Read, Y.-W. Cheng, R.R. Keller, J.D. McColskey. Tensile properties of free-standing aluminum thin films, Scripta Mater., v. 45(2001), s. 583-589.
  • 500. J.W. Hutchinson, Plasticity at the micron scale, Int. J. Solids Struct., v. 37(2000), s. 225-238.
  • 501. X.J. Wu, L.G. Du, H.F. Zhang, J.F. Liu, Y.S. Zhou, Z.Q. Li, L.Y. Xiong, Y.L. Bai, Synthesis and tensile property of nanocrystalline metal copper, Nanostruct. Mater., v. 12(1999), s. 221-224.
  • 502. J. Li, A.H.W. Ngan, P. Gumbsch, Atomistic modeling of mechanical behavior, Acta Mater., v. 51(2003), s. 5711-5742.
  • 503. M. Sob, M. Friak, D. Legut, J. Fiala, V. Vitek, The role of ab initio electronic structure calculations in studies of the strength of materials, Mater. Sci. Engn. A, v. 387-389(2004), s. 148-157.
  • 504. M. Cerny, J. Pokluda, M. Sob, M. Friak, P. Sandera, Ab initio calculations of elastic and magnetic properties of Fe, Co, Ni and Cr crystals under isotropic deformation, Phys. Rev. B, v. 67(2003), s. 035116-1-035116-8.
  • 505. C.R. Krenn, D. Roundy, M.L. Cohen, D.C. Chrzan, J.W. Morris jr. Connecting atomistic and experimental estimates of ideal strength, Phys. Rev. B, v. 65(2002), s. 134111-1-134111-4.
  • 506. C.R. Krenn, D. Roundy, J.W. Morris jr, M.L. Cohen, Ideal strengths of bcc metals. Mater. Sci. Engn. A, v. 319-321(2001), s. 111-114.
  • 507. C.R. Krenn, D. Roundy, J.W. Morris jr., M.L. Cohen, The non-linear elastic behavior and ideal shear strength of Al and Cu, Mater. Sci. Engn. A, v. 3 17(2001), s. 44-48.
  • 508. D. Roundy, C.R. Krenn, M.L. Cohen, J.W. Morris jr, Ideal Shear Strengths of fcc Aluminum and Copper, Phys. Rev. Lett., v. 82(1999), s. 2713-2716.
  • 509. P. Sandera, J. Pokluda, L.G. Wang, M. Sob, Calculation of theoretical strength of solids by linear muffin-tin orbitals (LMTO) method, Mater. Sci. Engn. A, v. 234-236(1997), s. 370-372.
  • 510. J.W. Morris jr, Z. Guo, C. R. Krenn. Y.-H. Kim, The Limits of Strength and Toughness in Steel, ISIJ International, v. 41(2001), s. 599-611.
  • 511. M. Friak, M. Sob, V. Vitek, Ab initio study of the ideal tensile strength and mechanical stability of transition-metal disilicides, Phys. Rev. B, v. 68(2003), s. 184101-1-184101-10.
  • 512. D.M. Clatterbuck, D.C. Chrzan, J.W. Morris jr, The ideal strength of iron intension and shear, Acta Mater., v. 51(2003), s. 2271-2283.
  • 513. S. Ogata, Ju Li, Y. Shibutani, S. Yip, Ab Initio Study of Ideal Shear Strength, Proc. IUTAM Symp. on Mesoscopic Dynamics of Fracture Process and Materials Strength, H. Kitagawa and Y. Shibutani (red.), Kluwer, Dordrecht, 2004.
  • 514. W. Luo, D. Roundy, M.L. Cohen, J.W. Morris jr. Ideal strength of bcc molybdenum and niobium, Phys. Rev. B, v. 66(2002), s. 094110-1-094110-7.
  • 515. S. Ogata, J. Li, S. Yip, Ideal Pure Shear Strength of Aluminum and Copper, Science, v. 298(2002), s. 807-811.
  • 516. S. Ogata, J. Li, N. Hirosaki, Y. Shibutani, S. Yip, Ideal shear strain of metals and ceramics, Phys. Rev. B, v. 70(2004), s. 104104-1-104104-7.
  • 517. J.W. Morris jr, C.R. Krenn, D. Roundy, M.L. Cohen, Deformation at the limit of elastic stability, Mater. Sci. Engn. A, v. 309-310(2001), s. 121-124.
  • 518. J.W. Cahn, Y. Mishin, A. Suzuki, Coupling grain boundary motion to shear deformation, Acta Mater., v. 54(2006), s. 4953-4975.
  • 519. S.S. Brenner, Tensile Strength of Whiskers, J. Appl. Phys., v. 27(1956), s. 1484-1491.
  • 520. A. Nohara, Effect of Size on the Strength of Metal Whiskers, Japanese J. Appl. Phys., v. 21(1982), s. 1287-1292.
  • 521. D.J. Benson, H.-H. Fu, M.A. Meyers, On the effect of grain size on yield stress: extension into nanocrystalline domain, Mater. Sci. Engn A, v. 319-321(2001), s. 854-861.
  • 522. H.-H. Fu, D.J. Benson, M.A. Meyers, Analytical and Computational Description of Effect of Grain Size on Yield Stress of Metals, Acta Mater., v. 49(2001), s. 2567-2582.
  • 523. V. Yamakov, E. Saether, D. Phillips, E.H. Glaessgen, Stress distribution during deformation of polycrystalline aluminum by molecular-dynamics and finite-element modeling. Collection of Technical Papers - 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, v. 3(2004), s. 2074-2082.
  • 524. Y. Wei, Ch. Su, L. Anand, A computational study of the mechanical behavior of nanocrystalline fcc metals, Acta Mater., v. 54(2006), s. 3177-3190.
  • 525. M.G. Zelin, N.A. Krasilnikov, R.Z. Valiev, M.W. Grabski, H.S. Yang, A.K. Mukherjee, On the microstructural aspects of the nonhomogeneity of superplastic deformation at the level of grain groups, Acta Metall. Mater., v. 42(1994), s. 119-126.
  • 526. M.G. Zelin, A.K. Mukherjee, Cooperative phenomena at grain boundaries during superplastic flow. Acta Metall. Mater., v. 43(1995), s. 2359-2372.
  • 527. O.A. Kaibyshev, Fundamental aspects of superplastic deformation, Mater. Sci. Engn. A, v. 324(2002), s. 96-102.
  • 528. O.A. Kaibyshev, A.I. Pshenichnyuk, Elongation to failure in the model of cooperative grain boundary sliding. Mater. Sci. Engn. A, v. 410-411(2005), s. 105-108.
  • 529. S. Kocańda, Zmęczeniowe pękanie metali, WNT, Warszawa, 1987.
  • 530. N.A. Krasilnikov, W. Łojkowski, Z. Pakieła, K.J. Kurzydłowski, Mechanical properties and deformation behaviour of ultra-fine grained nickel, Solid State Phenom., v. 114(2006), s. 79-84.
  • 531. A.A.W. Thompson, Yielding in nickel as a function of grain or cell size, Acta Metall., v. 23(1975), s. 1337-1342.
  • 532. J. Bauschinger, On the Change of the Elastic Limit and Hardness of Iron and Steels through Extension and Compression, through Heating and Cooling and through Cycling, Mitteilung aus dem Mechanisch, Technischen Laboratorium der K. Technische Hochschule in Munchen, v. 13, Part 5 (1886), s. 31.
  • 533. T. Hasegawa, T. Yakou, S. Karashima, Deformation behaviour and dislocation structures upon stress reversal in polycrystalline aluminium. Mater. Sci. Engn., v. 20(1975), s. 267-276.
  • 534. T. Hasegawa, U.F. Kocks, Thermal recovery processes in deformed aluminum, Acta Metall., v. 27(1979), s. 1705-1716.
  • 535. N. Christodoulou, O.T. Woo, S.R. MacEwen, Effect of stress reversals on the work hardening behaviour of polycrystalline copper, Acta Metall., v. 34(1986), s. 1553-1562.
  • 536. M. Haouaoui, I. Karman, H.J. Maier, Flow stress anisotropy and Bauschinger effect in ultrafine grained copper, Acta Mater., v. 54(2006), s. 5477-5488.
  • 537. D. Tabor, The Physical Meaning of Indentation and Scratch Hardness, British J. Appl. Phys., v. 7(1956), s. 159-166.
  • 538. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Factors influencing the flow and hardness of materials with ultrafine grain sizes, Phil. Mag. A, v. 78(1998), s. 203-215.
  • 539. T.R. Malow, C.C Koch, P.Q. Miraglia, K.L. Murty, Compressive mechanical behavior of nanocrystalline Fe investigated with an automated ball indentation technique, Mater. Sci. Engn. A, v. 252(1998), s. 36-43.
  • 540. R. Rodriguez, I. Gutierrez, Correlation between nanoindentalion and tensile properties influence of the indentation size effect, Mater. Sci. Engn. A, v. 361(2003), s. 377-384.
  • 541. D. Kramer, H. Huang, M. Kriese, J. Robach, J. Nelson, A. Wright, D. Bahr, W.W. Gerberich, Yield strength predictions from the plastic zone around nanocontacts, Acta Mater., v. 47(1999), s. 333-343.
  • 542. A.A. Elmuslafa, D.S. Stone, Size-dependent hardness in annealed and work hardened ?-brass and aluminum polycrystalline materials using activation volume analysis, Mater. Letters, v. 57(2003), s. 1072-1078.
  • 543. W.A. Soer, K.E. Aifantis, J.Th.M. De Hosson, Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals, Acta Mater., v. 53(2005), s. 4665-4676.
  • 544. B. Yang, H. Vehoff, Dependence of nanohardness upon indentation size and grain size - A local examination of the interaction between dislocations and grain boundaries, Acta Mater., v. 55(2007), s. 849-856.
  • 545. B. Yang, H. Vehoff, Grain size effects on the mechanical properties of nanonickel examined by nanoindentation. Mater. Sci. Engn. A, v. 400-401(2005), s. 467-470.
  • 546. K.J. Van Vliet, J. Li, T. Zhu, S. Yip, S. Suresh, Quantifying the early stages of plasticity through nanoscale experiments and simulations, Phys. Rev. B, v. 67(2003), s. 104105-1-104105-15.
  • 547. Y. Choi, K.J. Van Vliet, J. Li, S. Suresh, Size effects on the onset of plastic deformation during nanoindentation of thin films and patterned lines, J. Appl. Phys., v. 94(2003), s. 6050-6058.
  • 548. F. Sansoz, V. Dupont, Atomic mechanism of shear localization during indentation of a nanostructured metal, Mater, Sci. Engn. C, v. 27(2007), s. 1509-1513.
  • 549. T. Zhu, J. Li, K.J. Van Vliet, S. Ogata, S. Yip, S. Suresh, Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper, J. Mech. Phys. Solids, v. 52(2004), s. 691-724.
  • 550. J. Li, K.J. Van Vliet, T. Zhu, S. Yip, S. Suresh, Atomistic mechanisms governing elastic limit and incipient plasticity in crystals, Nature, v. 418(2002), s. 307-310.
  • 551. J. Li, T. Zhu, S. Yip, K.J. Van Vliet, S. Suresh, Elastic criterion for dislocation nucleation, Materials Science and Engineering A, v. 365(2004), s. 25-30.
  • 552. M.C. Roco, S. Williams, P. Alivisatos (red.), Nanotechnology Research Directions: IWGN Workshop Raport, Vision for Nanotechnology Research and Development in the Next Decade. WTEC, Loyola College in Maryland, Baltimore, 1999.
  • 553. A. Franco, S.G. Roberts, P.D. Warren, Fracture toughness, surface flaw sizes and flaw densities in Al2O3, Acta Mater., v. 45(1997), s. 1009-1015.
  • 554. A. Muchtar, L.C. Lim, Indentation fracture toughness of high purity submicron alumina, Acta Mater., v. 46(1998), s. 1683-1690.
  • 555. R.W. Armstrong, Grain size dependent alumina fracture mechanics stress intensity, Int. J. of Refractory Metals and Hard Materials, v. 19(2001), s. 251-255.
  • 556. A.A. Griffith, The Phenomena of Rupture and Flow in Solids, Phil. Transactions of Royal Society, London A, v. 221(1920), s. 163-198.
  • 557. J.D. Currey, Mechanical Properties of Mother of Pearl in Tension. Proc. Royal Society of London, Series B, Biological Sci., v. 196(1977), s. 443-463.
  • 558. A.P. Jackson, J.F.V. Vincent, R.M. Turner, The Mechanical Design of Nacre, Proc. Royal Society of London, Series B, Biological Sci., v. 6234(1988), s. 415-440.
  • 559. T.E. Schaffer, C. Ionescu-Zanetti, R. Proksch, M. Fritz, D.A. Walters, N. Almqvist, Ch.M. Zaremba, A.M. Belcher, B.L. Smith, G.D. Stucky, D.E. Morse, P.K. Hansma, Does Abalone Nacre Form by Heteroepitaxial Nuclealion or by Growth through Mineral Bridges? Chem. Mater., v. 9(1997), s. 1731-1740.
  • 560. A. Lin, M.A. Meyers, Growth and structure in abalone shell, Mater. Sci. Engn. A, v. 390(2005), s. 27-41.
  • 561. B. Ji, H. Gao, Mechanical properties of nanostructure of biological materials, J. Mech. Phys. Solids, v. 52(2004), s. 1963-1990.
  • 562. H. Gao, B. Ji, I.L. Jager, E. Arzt, P. Fratzl, Materials become insensitive to flaws at nanoscale: Lessons from nature, Proc. of the National Academy of Sciences of the United States of America (PNAS), v. 100(2003), s. 5597-5600.
  • 563. H. Gao, B. Ji, M.J. Buehler, H. Yao, Flaw tolerant bulk and surface nanostructures of biological systems, Mechanics & chemistry of biosystems (MCB), v. 1(2004), s. 37-53.
  • 564. B.J.F. Bruet, H.J. Qi, M.C. Boyce, R. Panas, K. Tai, L. Frick, C. Ortiz, Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus, J. Mater. Res., v. 20(2005), s. 2400-2419.
  • 565. H. Gao, B. Ji, Modeling fracture in nanomaterials via a virtual internal bond method, Engn. Fract. Mechanics, v. 70(2003), s. 1777-1791.
  • 566. H. Gao, P. Klein, Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds, J. Mech. Phys. Solids, v. 46(1998), s. 187-218.
  • 567. P. Klein, H. Gao, Crack nucleation and growth as strain localization in a virtual-bond continuum, Engn. Fracture Mech., v. 61(1998), s. 21-48.
  • 568. R.S. Ruoff, L. Calabri, W. Ding, N.M. Pugno, Experimental tests on fracture strength of nanotubes, Reviews on Advanced Materials Science, v. 10(2005), s. 110-117.
  • 569. S.L. Mielke, D. Troya, S. Zhang, J.-L. Li, S. Xiao, R. Car, R.S. Ruoff, G.C. Schatz, T. Belytschko, The role of vacancy defects and holes in the fracture of carbon nanotubes, Chemical Physics Letters, v. 390(2004), s. 413-420.
  • 570. M. Yang, V. Koutsos, M. Zaiser, Size effect in the tensile fracture of single-walled carbon nanotubes with defects, Nanotechnology, v. 18(2007), s. 155708-1-155708-6.
  • 571. T.L. Anderson, Fracture Mechanics, Fundamentals and Applications, CRC Press, London, 1995.
  • 572. S.H. Goods, L.M. Brown, Overview No 1: The nucleation of cavities by plastic deformation, Acta Metall., v. 27(1979), s. 1-15.
  • 573. D. Broek, The role of inclusions in ductile fracture and fracture toughness, Engn. Fracture Mechanics, v. 5(1973), s. 55-56.
  • 574. P.F. Thomason, Ductile Fracture of Metals, Pergamon Press, Oxford, 1990.
  • 575. P.F. Thomason, Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids, Acta Metal., v. 33(1985), s. 1079-1085.
  • 576. P.F. Thomason, A three-dimensional model for ductile fracture by the growth and coalescence of microvoids, Acta Metal., v. 33(1985), s. 1087-1095.
  • 577. P.F. Thomason, Ductile fracture by the growth and coalescence of microvoids of non-uniform size and spacing, Acta Metall. Mater., v. 41(1993), s. 2127-2134.
  • 578. T. Pardoen, J.W. Hutchinson, Micromechanics-based model for trends in toughness of ductile metals, Acta Mater., v. 51(2003), s. 133-148.
  • 579. S.L. Frederiksen, K.W. Jacobsen, J. Schiotz, Simulations of intergranular fracture in nanocrystalline molybdenum, Acta Mater., v. 52(2004), s. 5019-5029.
  • 580. D. Farkas, B. Hyde, Improving the Ductility of Nanocrystalline bcc Metals, Nano Lett., v. 5(2005), s. 2403-2407.
  • 581. D. Farkas, Fracture resistance of nanocrystalline Ni, Metall. Mater. Trans. A, v. 38A(2007), s. 2168-2173.
  • 582. I.A. Ovid'ko, A.G. Sheinerman, Triple junction nanocracks in deformed nanocrystalline materials, Acta Mater., v. 52(2004), s. 1201-1209.
  • 583. I.A. Ovid'ko, A.G. Sheinerman, Suppression of nanocrack generation in nanocrystalline materials under superplastic deformation, Acta Mater., v. 53(2005), s. 1347-1359.
  • 584. I.A. Ovid'ko, Review on the fracture processes in nanocrystalline materials. J. Mater. Sci., v. 42(2007), s. 1694-1708.
  • 585. C. Gu, J. Lian, Q. Jiang, Z. Jiang, Ductile-brittle-ductile transition in an electrodeposited 13 nanometer grain sized Ni-8.6 wt.% Co alloy, Mater. Sci. Engn. A, v. 459(2007), s. 75-81.
  • 586. C. Gu, J. Lian, Z. Jiang, Q. Jiang, Enhanced tensile ductility in an electrodeposited nanocrystalline Ni, Scripta Mater., v. 54(2006), s. 579-584.
  • 587. J.R. Rice, R. Thomson, Ductile versus brittle behaviour of crystals, Phil. Mag., v. 29(1974), s. 73-97.
  • 588. X.-P. Xu, A.S. Argon, M. Ortiz, Nucleation of dislocations from crack tips under mixed modes of loading: implications for brittle versus ductile behaviour of crystals, Phil. Mag. A, v. 72(1995), s. 415-451.
  • 589. J. Schiotz, L.M. Canel, A.E. Carlson, Effects of crack tip geometry on dislocation emission and cleavage: A possible path to enhanced ductility. Phys. Rev. R, v. 55( 1997), s. 6211 -6221.
  • 590. L.L. Fischer, G.E. Beltz, Effect of crack blunting on the competition between dislocation nucleation and cleavage, J. Mech. Phys. Solids, v. 49(2001), s. 635-654.
  • 591. D. Farkas, Atomistic studies of intrinsic crack-tip plasticity, MRS Bull., v. 25(2000), s. 35-38.
  • 592. D. Farkas, Fracture toughness from atomistic simulations: Brittleness induced by emission of sessile dislocations, Scripta Mater., v. 4-5(1998), s. 533-536.
  • 593. D. Farkas, M. Duranduru, W.A. Curtin, C. Ribbens, Multiple-dislocation emission from the crack tip in the ductile fracture of Al, Phil. Mag. A, v. 81(2001), s. 1241-1255.
  • 594. S.J. Noronha, D. Farkas, Effect of dislocation blocking on fracture behavior of Al and ?-Fe: A multiscale study, Mater. Sci. Engn. A, v. 365(2004), s. 156-165.
  • 595. G.E. Beltz, D.M. Lipkin, L.L. Fischer, Role of Crack Blunting in Ductile Versus Brittle Response of Crystalline Materials, Phys. Rev. Lett., v. 82(1999), s. 4468-4471.
  • 596. R. Miller, E.B. Tadmor, R. Phillips, M. Ortiz, Quasicontinuum simulation of fracture at the atomic scale, Modelling Simul. Mater. Sci. Engn., v. 6(1998), s. 607-638.
  • 597. K. Borysovska, V. Slunyaev, Yu. Podrezov, Z. Pakieła, K. Kurzydłowski, Influence of the dislocation structure on the crack tip in highly deformed iron, Mater. Sci. - Poland, v. 23(2005), s. 521-528.
  • 598. M. Danylenko, Yu. Podrezov, S. Firstov, Effect of dislocation structure on fracture toughness of strained BCC-metals, Theoret. Appl. Fract. Mech., v. 52(1999), s. 9-14.
  • 599. A.V. Korznikov, I.M. Safarov, R.Z. Valiev, A.A. Emelianov, Wlijanije submikroziernistoj struktury na miechaniczeskije swojstwa nizkouglerodistych stalej, Mietałłowiedienije i tiermiczeskaja obrabotka mietałłow, nr 3(1993), s. 27-30.
  • 600. K. Wieghardt, Über das Spalten und Zerreissen elastischer Körper, Z. Mathematik und Physik, v. 55(1907), s. 60-103, tłum. ang.: H.P. Rossmanith, On splitting and cracking of elastic bodies, Fatigue Fract. Engn. Mater. Struct., v. 12(1995), s. 1371-405.
  • 601. C.E. Inglis, Stresses in a plate due to the presence of cracks and sharp corners. Transactions of the Institute of Naval Architects, v. 55(1913), s. 219-230.
  • 602. B. Cotterell, The past, present, and future of fracture mechanics, Engn. Fracture Mechanics, v. 69(2002), s. 533-553.
  • 603. F.G. Emmerich, Tensile strength and fracture toughness of brittle materials, J. Appl. Phys., v. 102(2007), s. 073504-1-073504-12.
  • 604. G.R. Irwin, Fracture dynamics, in: Fracturing of Metals, Proc. of the ASM Symp. on Fracturing of Metals, American Society for Metals, Cleveland, 1948, s. 147-166.
  • 605. E. Orowan, Fracture and strength of solids, Reports on Progress in Physics, v. 12(1949), s. 185-232.
  • 606. D. Hull, Fractography: Observing, Measuring and Interpreting Fracture Surface Topography, University Press, Cambridge, 1999.
  • 607. J.W. Wyrzykowski, E. Pleszakow, J. Sieniawski, Odkształcanie i pękanie metali, WNT, Warszawa, 1999.
  • 608. Z. Bojar, S. Jóźwiak, J. Bystrzycki, Tensile properties and fracture behavior of nanocrystalline Ni3Al intermetallic foil, Scripta Mater., v. 55(2006), s. 399-402.
  • 609. H. Li, F. Ebrahimi, Ductile-to-brittle transition in nanocrystalline metals, Advanced Mater., v. 17(2005), s. 1969-1972.
  • 610. F. Ebrahimi, A.J. Liscano, D. Kong, Q. Ziai, H. Li, Fracture of Bulk Face Centred Cubic (FCC) Metallic Nanostructures, Rev. Adv. Mater. Sci., v. 13(2006), s. 33-40.
  • 611. Y.Q. Wu, Y.B. Xu, Direct evidence for microplastic fracture in single-crystal silicon at ambient temperature, Phil. Mag., v. 78(1998), s. 9-13.
  • 612. S. Suresh, Fatigue of Materials, Cambridge University Press, second edition, Cambridge, 2003.
  • 613. A. Vinogradov, A. Washikita, K. Kitagawa, V. I. Kopylov, Fatigue life of fine-grain Al-/Mg-/Sc alloys produced by equal-channel angular pressing. Materials Sci. Engn. A, v. 349(2003), s. 318-326.
  • 614. L. Kunz, P. Lukáš, M. Svoboda, Fatigue strength, microstructural stability and strain localization in ultrafine-grained copper, Mater. Sci. Engn. A, v. 424(2006), s. 97-104.
  • 615. C.S. Chung, J.K. Kim, H.K. Kim, W.J. Kim, Improvement of high-cycle fatigue life in a 6061 Al alloy produced by equal channel angular pressing, Mater. Sci. Engn., A, v. 337(2002), s. 39-44.
  • 616. P.S. Pao, H.N. Jones, S.F. Cheng, C.R. Feng, Fatigue crack propagation in ultrafine grained Al-Mg alloy, Int. J. of Fatigue, v. 27(2005), s. 1164-1169.
  • 617. P. Cavaliere, Strain rate sensitivity and fatigue properties of an Al-Fe nanocrystalline alloy produced by cryogenic ball milling, Multidiscipline Modeling in Materials and Structures, v. 3(2007), s. 225-234.
  • 618. A.B. Witney, P.G. Sanders, J.R. Weertman, J.A. Eastman, Fatigue of nanocrystalline copper, Scripta Metall. Mater., v. 33(1995), s. 2025-2030.
  • 619. Y. Yang, B.I. Imasogie, S.M. Allameh, B. Boyce, K. Lian, J. Lou, W.O. Soboyejo, Mechanisms of fatigue in LIGA Ni MEMS thin films, Mater. Sci. Engn. A, v. 444(2007), s. 39-50.
  • 620. Y.-C. Wang, A. Misra, R.G. Hoagland, Fatigue properties of nanoscale Cu/Nb multilayers, Scripta Mater., v. 54(2006), s. 1593-1598.
  • 621. J. Schiotz, Strain-induced coarsening in nanocrystalline metals under cyclic deformation, Mater. Sci. Engn. A, v. 375-377(2004), s. 975-979.
  • 622. C.A. Schuh, T.G. Nieh, T. Yamasaki, Hall-Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel, Scripta Mater., v. 46(2002), s. 735-740.
  • 623. R. Mishra, B. Basu, R. Balasubrarnaniam, Effect of grain size on the tribological behavior of nanocrystalline nickel, Mater. Sci. Engn. A, v. 373(2004), s. 370-373.
  • 624. Z.B. Wang, N.R. Tao, S. Li, W. Wang, G. Liu, J. Lu, K. Lu, Effect of surface nanocrystallization on friction and wear properties in low carbon steel, Mater. Sci. Engn. A, v. 352(2003), s. 144-149.
  • 625. J. Budniak. M. Lewandowska, W. Pachla, M. Kulczyk, K.J. Kurzydłowski, The Influence of Hydrostatic Extrusion on the Properties of an Austenitic Stainless Steel, Solid State Phenomena, v. 114(2006), s. 57-62.
  • 626. H. Garbacz, M. Grądzka-Dahlke, K.J. Kurzydłowski, The tribological properties of nano-titanium obtained by hydrostatic extrusion, Wear, v. 263(2007), s. 572-578.
  • 627. K. Han, A.A. Vasquez, Y. Xin, P.N. Kalu, Microstructure and tensile properties of nanostructured Cu-25wt%Ag, Acta Mater., v. 51(2003), s. 767-780.
  • 628. K. Han, J.D. Embury, J.R. Sims, L.J. Campbell, H.-J. Schneider-Muntau, V.I. Pantsyrnyi, A. Shikov, A. Nikulin, A. Vorobieva, The fabrication, properties and microstructure of Cu-Ag and Cu-Nb composite conductors, Mater. Sci. Engn. A, v. 267(1999), s. 99-114.
  • 629. S.M. Spearing, Materials issues in microelectromechanical systems (MEMS). Acta Mater., v. 48(2000), s. 179-196.
  • 630. A.D. Romig jr., M.T. Dugger, P.J. McWhorter, Materials issues in microelectromechanical devices: Science, engineering, manufacturability and reliability, Acta Mater., v. 51(2003), s. 5837-5866.
  • 631. M.J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, CRC Press, London, 2002.
  • 632. D. Clark, D. Wood, U. Erh, Industrial applications of electrodeposited nanocrystals, Nanostruct. Mater., v. 9(1997), s. 755-758.
  • 633. C.C. Koch, Structural nanocrystalline materials: an overview, J. Mater Sci., v. 42(2007), s. 1403-1414.
  • 634. Y.T. Zhu, T.C. Lowe, R.Z. Valiev, V.V. Stolyarov, V.V. Latysh, G.J. Raab, Ultrafine-grained titanium for medical implants, Patent USA no 6399215, 2002.
  • 635. Y.T. Zhu, T.C. Lowe, T.G. Langdon, Performance and applications of nanostructured materials produced by severe plastic deformation, Scripta Mater., v. 51(2004), s. 825-830.
  • 636. Z. Pakieła i inni, Ultradrobnoziamiste stopy Al do produkcji nitów o wysokiej wytrzymałości, Projekt badawczy rozwojowy realizowany na Wydziale Inżynierii Materiałowej PW, Warszawa, 2007.
  • 637. J.L. McCrea, G. Palumbo, G.D. Hibbard, U. Erb, Properties and applications for electrodeposited nanocrystalline Fe-Ni alloys, Reviews on Advanced Mater. Sci., v. 5(2003), s. 252-258.
  • 638. G. Palumbo, F. Gonzalez, A.M. Brennenstuhl, U. Erb, W. Shmayda, P.C. Lichtenberger. In-situ nuclear steam generator repair using electrodeposited nanocrystalline nickel, Nanostruct. Mater., v. 9(1997), s. 737-746.
  • 639. M. Ya, Y. Xing, F. Dai, K. Lu, J. Lu, Study of residual stress in surface nanostructured AISI 316L stainless steel using two mechanical methods, Surface and Coatings Technology, v. 168(2003), s. 148-155.
  • 640. S.G. Roberts, Modelling Brittle-Ductile Transitions, Proc. of NATO conf. ,,Multiscale Phenomena in Plasticity: from Eksperiments to Phenomenology, Modelling & Materials Engineering", 8-19 Sept., Ouranopolis, Greece, 1999, s. 1-15.
  • 641. A. Hasnaoui, H. Van Swygenhoven. P.M. Derlet, On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: A molecular dynamics computer simulation, Acta Mater., v. 50(2002), s. 3927-3939.
  • 642. T. Watanabe, S.Tsurekawa, The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering, Acta Mater., v. 47(1999), s. 4171-4185.
  • 643. W. Świątnicki, Strukturalne podstawy inżynierii granic międzykrystalicznych, Prace Naukowe Politechniki Warszawskiej, Inżynieria Materiałowa, z. 16, 2003.
  • 644. B.M. Guyot, N.L. Richards, A study on the effect of cold rolling and annealing on special grain boundary fractions in commercial-purity nickel, Mater. Sci. Engn. A, v. 395(2005), s. 87-97.
  • 645. V. Randle, Overview No 139: Twinning-related grain boundary engineering, Acta Mater., v. 52(2004), s. 4067-4081.
  • 646. M. Winning, Grain boundary engineering by application of mechanical stresses, Scripta Mater., v. 54(2006), s. 987-992.
  • 647. K. Harada, S. Tsurekawa, T. Watanabe, G. Palumbo, Enhancement of homogeneity of grain boundary microstructure by magnetic annealing of electrodeposited nanocry stalling nickel, Scripta Mater., v. 49(2003), s. 367-372.
  • 648. T. Watanabe, S. Tsurekawa, G. Palumbo, Grain boundary Microstructural Control in Nanocrystalline Ni and Ni-20%massFe Alloy by Magnetic Annealing, Solid State Phenomena, v. 101-102(2005), s. 171-180.
  • 649. T. Watanabe, S. Tsurekawa, X. Zhao, L. Zuo, Grain boundary engineering by magnetic field application, Scripta Mater., v. 54(2006), s. 969-975.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0029-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.