PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Introducing a failure criteria for a living cell during microinjection

Identyfikatory
Warianty tytułu
Konferencja
Mechanics 2008 / International Scientific Conference (VI; 2008; Rzeszow, Poland)
Języki publikacji
EN
Abstrakty
EN
This paper presents finite element modelling of the deformation of a detached living cell subjected to microinjection and through the simulation, an investigation of the material properties of the cell components. The model is verified using images of the deformed cell as well as the measured penetration forces in the tests reported in open literature. It is hoped that the modelling in this context will help to quantitatively evaluate the mechanical properties of the cells, and in particular, the failure strain of the cell cortex, when penetration occurs.
Słowa kluczowe
Rocznik
Strony
55--63
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
autor
autor
autor
  • School of Engineering, University of Aberdeen, United Kingdom
Bibliografia
  • 1. Chen, C.S., Ingber, D.H.: Tensegrity and mechanoregulation: from skeleton to cytoskeleton. Osteoarthritis and Cartilage 7 (1), 81-94, 1999.
  • 2. Watson, P.A.: Function follows form-generation of intracellular signals by cell deformation. FASEB Journal 5, 2003-2019, 1991.
  • 3. Bouten, C.V.C., Knight, M.M., Lee, D.A., Bader, D.L.: Compressive deformation and damage of muscle cell subpopulations in a model system. Annals of Biomedical Engineering 29, 153-163, 2001.
  • 4. Bouten, C.V., Oomens, C.W., Baaijens, F.P , Bader, D.L: The etiology of pressure ulcers: skin deep or muscle bound? Archives of Physical Medicine and Rehabilitation 84, 616-619, 2003.
  • 5. Takamatsu, H., Kumagae, N.: Survival of biological cells deformed in a narrow gap. Journal of Biomcchanical Engineering 124, 780-783, 2002.
  • 6. Zhang, Z., Ferenczi, M.A., Lush, A.C., Thomas, C.R.: A novel micromanipulation technique for measuring the bursting strength of single mammalian cells. Applied Microbiology and Biotechnology 36, 208-210, 1991.
  • 7. Lim, C.T., Zhou, F.H., Quek, S.T.: Mechanical models for living cells -A review. Journal of Biomechanics, 39, 195-216, 2006.
  • 8. Liu, S.C., Derick, L.H., Duquette, M.A., Palek, J.: Separation of the lipid bilayer from the cortex skeleton during discocyteechinocyte transformation of human erythrocyte ghosts. European Journal of Cell Biology, 49, 358-365, 1989.
  • 9. Peetersa, E.A.G., Oomensa, C.W.J., Boutena, C.V.C., Baderh, D.I., Baaijensa, F.P.T.: Mechanical and failure properties of single attached cells under compression. Journal of Biomechanics, 38, 1685-1693, 2005.
  • 10. Alcaraz, J., Buscemi, L., Grabulosa, M., Trepat, X., Fahry, B., Farre', R., Navajas, D.: Microrheology of Human Lung Epithelial Cells Measured by Atomic Force Microscopy. Biophysical Journal, Volume 84, 2071 -2079, 2003.
  • 11. Balland, M., Richert, A., and Gallet, F.: The dissipative contribution of myosin II in the cytoskeleton dynamics of myoblasts. Eur Biophys. J. Biophys. Lett., 34(3): 255-261, 2005.
  • 12. Desprat. N., Richert, A., Simeon, J., Asnacios, A.: Creep Function of a Single Living Cell. Biophysical Journal, Volume 88, 2224-2233, 2005.
  • 13. Fabry B., Maksym, O.K., Butler, J.P., Glogauer, M., Navajas, D., Fredberg, J.J.: Scaling the microrheology of living cells. Phys. Rev. Lett, 87:148102, 2001.
  • 14. Lau, A.W.C., Hoffman, B.D., Davies, A., Crocker, J.C., and Lubenskyl, T.C.; Microrheology, Stress Fluctuations, and ActiveBehavior of Living Cells. Phys. Rev. Lett., 2003.
  • 15. Lenormand G., Millet E., Fabry B., Butler J.P., Fredberg J.J.: Linearity and time-scale invariance of the creep function in living cells. Journal of the Royal Society (London): Interface. 1:91-97, 2004.
  • 16. Dahl K.N., Engler A J.. Pajerowski J.D., Discher D.E.: Power-law rheology of isolated nuclei with deformation mapping of nuclear sub-structures. Biophys J., 89, 2855-286, 2005,
  • 17. Yanai M., Butler J.P., Suzuki T., Sasaki H., Higuchi H.: Regional rheological differences in locomoting neutrophils. Am J Physiol Cell Physiol 287: C603-C611, 2004.
  • 18. ABAQUS Analysis User's Manual, Version 6.4, HKS Inc., Providence, Rhode Island, 2005.
  • 19. Bennett B.L: On obtaining the zero-temperature equation of state from shock data. Los Alamos National Laboratory, Los Alamos, New Mexico, 87544, 1984.
  • 20. Hartmann C., Mathmann K., Delgado A.: Mechanical stresses in cellular structures under high hydrostatic pressure. Innovative Food Science and Emerging Technologies, 2005.
  • 21. Saul A., Wagner W.: A fundamental equation for water covering the range from the melting line to 1273K at pressures up to 25000 MPa. Journal of Physical and Chemical Reference Data 18, 1537-1564, 1989.
  • 22. Smith A.E., Moxham K.E., Middelberg A.P.J.: Wall material properties of yeast cells. Part II. Analysis. Chemical Engineering Science 55, 2043-2053, 2000.
  • 23. Zhou E.H., Lim C.T., Tan K.S.W., Quek S.T., Lee A., Liau B.: Investigating the progression of disease state of malaria-infected red blood cells using micropipette aspiration. 2nd World Congress for Chinese Biomedical Engineers, Beijing, China, 2004.
  • 24. Sun Y., Wan K., Roberts K.P., Bischof J.C., Nelson B.J.: Mechanical Property Characterization of Mouse Zona Pellucida. IEEE Transactions on Nanobioscience, 2, 279-286, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0027-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.