PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magnetorheological flow, shear and squeeze mode vibration dampers

Autorzy
Identyfikatory
Warianty tytułu
Konferencja
Dynamika Konstrukcji / Sympozjum (XII ; 28-30 września 2005 ; Rzeszów-Bystre, Polska)
Języki publikacji
EN
Abstrakty
EN
The study is concerned with the development of magnetorheological (MR) flow, shear and squeeze mode vibration dampers (MR dampers), which has been a part of author's research program for two years. The composition and operating mechanism of MR fluids with an emphasis on modes used to construct MR vibration dampers are of the particular interest. Structures of MR flow and shear mode dampers, and selected results of their experimental tests are presented. Further research work focused on engineering of MR squeeze mode damper is announced.
Rocznik
Strony
327--334
Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
Twórcy
autor
  • Department of Process Control, AGH-University of Science and Technology, Cracow, Poland
Bibliografia
  • 1. JOLLY M. R., MUNOZ B. C., CARLSON D. J ., 1996, A model of the Behavoiur of Magnetorheological Material, Smart Materials and Structures, 607-614.
  • 2. JOLLY M. R., CARLSON D. J., 1996, Controllable Squeeze Film Damping Using Magnetorheological Fluid, Proc. of Int. Conf on New Actuators, Germany.
  • 3. JOLLY M. R., BENDER J. W. M., CARLSON D. J ., 1998, Properties and Application of Commercial Magnetorheological Fluids, Proc. of SPIE Symp. on Smart Materials and Structures, USA.
  • 4. RABINOW J ., 1948, The magnetic fluid clutch, AlEE Trans. 67, 13081315.
  • 5. RABINOW J ., 1948, Magnetic fluid clutch, National Bureau of Standards Technical News Bulletin, 32(4), 54-60.
  • 6. SAPIŃSKI B., 2003, Dynamic Characteristics of an Experimental MR fluid damper, Engineering Transactions, 51, 399-418.
  • 7. SAPIŃSKI B., 2004, Linear Magnetorheological Fluid Dampers for Vibration Mitigation: Modelling, Control and Experimental Testing, Dissertations, Monographs AGH, 128.
  • 8. SAPIŃSKI B., BYDON S., 2005, Magnetorhelogical rotary brake: analysis, design considerations and experimental evaluation, (to be published).
  • 9. SHEARER J. L., MURPHY A. T., RlCHARDSON H. H., 1967, Introduction to System Dynamics, Addison-Wesley, Reading, MA.
  • 10. SIMS N. D., STANWAY R., JOHNSON A. R., MELLOR P., 2001, Design, testing and model validation of an MR squeeze-flow vibration damper, Smart Structures and Materials, 111-120.
  • 11. STANWAY R., SIMS N. D., JOHNSON A. R., MELLOR P., 2000, Modelling and control of an MR vibration isolator, Proc. SPIE Symp. on Smart Materials and Structures, USA.
  • 12. WlNSLOW W., 1949, Induced Fibration of Suspensions, Journal of Applied Physics, 20, 1137-1140
  • 13. LORD CORPORATION, 2003, http://www.rheonetic.com. .
  • 14. US PATE NT 2,417850, 1947, Methods and Means for Translating Electrical impulses into Mechanical Forces.
  • 15. US PATENT 5,842,547, 1998, Controllable Brake.
  • 16. US PATENT, 5,277,281, 1999, Magnetorheological Fluid Dampers.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0019-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.