PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badanie procesów wymiany ciepła w wybranych elementach silników tłokowych

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono wyniki badań teoretycznych i eksperymentalnych wymiany ciepła w najbardziej obciążonych termicznie elementach silnika spalinowego tłokowego, tj. zaworze wylotowym, tłoku i tulei cylindrowej. Prace teoretyczne dotyczyły zwłaszcza modelowania radiacyjnej wymiany ciepła w komorze spalania silnika o zapłonie samoczynnym, warunków wymiany ciepła między przylgnią zaworu i gniazdem, między trzonkiem zaworu a prowadnicą oraz w zespole tłok-pierścień-tuleja cylindrowa. Zaprezentowano wyniki obliczeń numerycznych radiacyjnych strumieni ciepła w komorze spalania oraz pól temperatury w zaworze wylotowym, gnieździe i tłoku. Przeprowadzono analizę wpływu warunków brzegowych na pola temperatury. Badania eksperymentalne wykonane na stanowiskach modelowych pozwoliły m.in. na określenie konduktancji kontaktowej na styku zawór/gniazdo oraz współczynnika wymiany ciepła na styku trzonek zaworu/prowadnica. Przeprowadzono również pomiary temperatury w zaworze wylotowym, prowadnicy i gnieździe oraz pomiary radiacyjnego i całkowitego strumienia ciepła na głowicy pracującego silnika 4C90.
EN
Results of theoretical analyses and experimental investigations in the most thermally loaded parts of a piston IC engine, ie. the exhaust valve, piston and liner are presented in this work. Theoretical studies were devoted mainly to modelling radiation heat transfer in the combustion chamber of a Diesel engine, the conditions of heat transfer between the valve face and seat, the valve stem and guide and between the piston, ńngs and liner. Results of numerical calculations of radiative flux distribution in combustion chamber and temperature distributions in the exhaust valve, seat and piston are shown. Numerical analysis of the influence of boundary conditions on temperature distribution in these parts was carried out. Experimental studies, performed on specially built model stands, allowed the determination of valve face/valve seat contact conductance and the heat transfer coefficient at the valve stern/valve guide interface. Results of the exhaust valve, guide and seat temperature measurements as well as radiative and total heat fluxes on valve head surface measurements, performed on the operating 4C90 engine, are also presented.
Rocznik
Tom
Strony
3--114
Opis fizyczny
Bibliogr. 116 poz., wykr., schem., rys.
Twórcy
  • Instytut Techniki Cieplnej, Politechnika Warszawska
Bibliografia
  • [1] Alkidas A.C.: Heat Transfer Characteristics of a Spark-Ignition Engines. Journal of Heat Transfer, 1980, vol. 102, s. 189-193.
  • [2] Alkidas A.C., Myers J.P.: Transient Heat-Flux Measurements in the Combustion Chamber of a Spark-Ignition Engine. Journal of Heat Transfer, 1982, vol. 104, s. 62-67.
  • [3] Alkidas A.C.: Intake-Valve Temperature and the Factors Affecting It. SAE Paper 971729, 1997.
  • [4] Annand W.J.D.: Heat Transfer in Cylinders of Reciprocating Internal Combustion Engines. Proc. Instn. Mech. Engrs., 1963, vol. 177, No 36, s. 973-990.
  • [5] Annand W.J., Lanary R.S.: Heat Transfer Measurements on a Simple Model Representing a Poppet Exhaust Valve in an Outflowing Stream. Journal Mech. Eng. Science, 1970, vol. 12, No 3, s. 223-229.
  • [6] Banaszek J.: Comparison of Control-Volume and Galerkin Finite Element Methods for Diffusion Type Problems. Numerical Heat Transfer, Part B, 1989, vol. 16, s. 59-78.
  • [7] Banaszek J., Furmański P., Wiśniewski T.S.: Numerical Analysis of Radiative Heat Flux on Walls of the Combustion Chamber in a Diesel Engine. Advances in Computational Heat Transfer, 1997, CHT-97, s. 124-132.
  • [8] Banaszek J., Rebow M.: Analysis of Time-Averaging Techniques in FEM Modeling of Periodic Boundary Conditions. Journal of KONES - Internal Combustion Engines, 1995, vol. 2, No 1, s. 6-12.
  • [9] Baturin S.A., Sinicin W.A.: Mathematical Modeling of Local Heat Transfer in Diesel Engines. Dwigatielostrojenie, 1982, No 6, s. 15-18.
  • [10] Borman G., Nishiwaki K.: Internal-Combustion Engine Heat Transfer. Prog. Energy Combust. Science, 1987, vol. 13, s. 1-46.
  • [11] Boulouchos K., Eberle M.K., Ineichen B., Klukowski C.: New Insights into the Mechanisms of Incylinder Heat Transfer in Diesel Engines. SAE Paper 890573, 1989.
  • [12] Boulouchos K., Hannoschock N.: Der Warmetransport zwischen Arbeitsmedium und Brennraumwand. MTZ, 1986, vol. 47, s. 337-345.
  • [13] Caton J.A., Heywood J.B.: An Experimental and Analytical Study of Heat Transfer in an Engine Exhaust Port. Int. Journal of Heat and Mass Transfer, 1981, vol. 24, No 4, s. 581-595.
  • [14] Chang S.L. Rhee K.T.: Computation of Radiative Heat Transfer in Diesel Combustion. SAE Paper 831332, 1983.
  • [15] Chapman M., Friedman M.C., Aghan A.: A Time-Dependent Spatial Model for Radiant Heat Transfer in Diesel Engines. SAE Paper 831725, 1983.
  • [16] Chapman K.S., Vance J.: Application of the Discrete Ordinates Radiation Model to Internal Combustion Engine Heat Transfer Calculations. ASME ICE, 1995, vol. 25-2, s. 1-7.
  • [17] Cheung C.S., Leung C.W., Leung T.P.: Modeling Global Radiative Heat Flux in a Direct Injection Diesel Engine. Proc. of 10th Int. Heat Transfer Conference, Brighton (England), 1994, vol. 1-RC-2, s. 7-12.
  • [18] Coelho P.J., Carvalho M.G.: Modeling of Soot Formation and Oxidation in Turbulent Diffusion Flames. Journal of Thermophysics and Heat Transfer, 1995, vol. 9, No 4, s. 644-652.
  • [19] Cowart J., Cheng W.: Intake Valve Thermal Behavior During Steady-State and Transient Engine Operation. SAE Paper 1999-01-3643, 1999.
  • [20] Crookes R.J., Sivalingam G., Nazha M.A.A., Rajakaruma H.: Prediction and Measurement of Soot Particulate Formation in a Confined Diesel Fuel Spray-Flame at 2.1 MPa. Int. Journal of Thermal Sciences, 2003, vol. 42, s. 639-646.
  • [21] Dent J.C., Sulaiman S.J.: Convective and Radiation Heat Transfer in a High Swirl DI Diesel Engine. SAE Paper 770407, 1977.
  • [22] Depcik C., Assanis D.: An Universal Heat Transfer Correlation for Intake and Exhaust Flows in a Spark-Ignition Internal Combustion Engine. SAE Paper 2002-01-0372, 2002.
  • [23] Ebersole G.D., Myers P.S., Uyehara O.A.: The Radiant and Convective Components of Diesel Engine Heat Transfer. SAE Paper 701 C, 1971.
  • [24] Edwards D.K., Balakrishnan A.: Thermal Radiation by Combustion Gases. Int. Journal of Heat and Mass Transfer, 1973, vol. 16, s. 25-40.
  • [25] Eriksson L.: Mean Value Models for Exhaust Systems Temperatures. SAE Paper 2002-01-0374, 2002.
  • [26] Farmer R., Edelman R., Wong E.: Modeling Soot Emissions in Combustion Systems. Particulate Carbon. Plenum Press, 1981, s. 299-320.
  • [27] Flynn P., Mizukawa M., Myers P.S.: An Experimental Determination of the Instantaneous Potential Radiant Heat Transfer Within an Operating Diesel Engine. SAE Paper 720022, 1972.
  • [28] Furmański P., Banaszek J., Wiśniewski T.S.: Radiative Heat Flux Distribution on Walls of the Combustion Chamber in Diesel Engines. Opaque Burnt Gas Zone. Journal of KONES, 1996, vol. 3, No 1, s. 69-76.
  • [29] Furmański P., Banaszek J., Wiśniewski T.S.: Radiation Heat Transfer in a Combustion Chamber of Diesel Engine with Partially Transparent Burned Gas Zone. SAE Paper 980504, 1998.
  • [30] Furmański P., Banaszek J., Wiśniewski T.S.: Radiative Heat Transfer in the Combustion Chamber of a Diesel Engine. Int. Journal of Computational Fluid Dynamics, 1999, vol. 11, s. 325-339.
  • [31] Furmański P., Banaszek J., Wiśniewski T.S., Rebow M.: Influence of Thermal Radiation from the Burned Zone on Heat Transfer in the Exhaust Valve of Diesel Engine. 11th Int. Heat Transfer Conf., Kyongju (Korea), 1998, vol. 7, s. 439-444.
  • [32] Furmański P., Banaszek J., Wiśniewski T.S., Rebow M.: Influence of Thermal Radiation from the Burned Zone on Heat Transfer in the Piston of Diesel Engine. Progress in Engineering Heat Transfer, IF-FM Publishers, Gdańsk, 1999, s. 11-18.
  • [33] Furmański P., Wiśniewski T.S.: On Radiation Heat Transfer in Internal Combustion Engines. Journal of KONES, 1994, vol. 1, No 1, s. 106-118.
  • [34] Furmański P., Wiśniewski T.S.: Problems of Heat Transfer Modeling in Sliding Solids. Proc. of 9-th Heat and Mass Transfer Symposium, Augustów, 1995, s. 299-308.
  • [35] Furmański P., Wiśniewski T.S.: A Model for Estimation of Radiative Heat Flux Distribution on Walls of Cylinder in Diesel Engine. Journal of KONES, 1995, vol. 2, No 1, s. 120-129.
  • [36] Furmański P., Wiśniewski T.S.: Thermal Contact Resistance and other Thermal Phenomena at Solid/Solid Interface. Monografia. Instytut Techniki Cieplnej PW, Warszawa 2002.
  • [37] Heisler H.: Advanced Engine Technology. SAE, 1995.
  • [38] Heywood J.B.: Internal Combustion Engine Fundamentals. McGraw-Hill, London 1988.
  • [39] Hires S.D., Pochmara G.L.: An Analytical Study of Exhaust Gas Heat Loss in a Piston Engine Exhaust Port. SAE Paper 760767, 1976.
  • [40] Hiroyasu H., Kadota T.: Models for Combustion and Formation of Nitric Oxide and Soot in DI Diesel Engines. SAE Paper 760129, 1976.
  • [41] Hoag K.L.: Measurement and Analysis of the Effect of Wall Temperature on Instantaneous Heat Flux. SAE Paper 860312, 1987.
  • [42] Ishii A., Nagano H., Adachi K., Kimura S., Koike M., Iido N., Ishii H., Enomoto Y.: Measurement of Instantaneous Heat Flux Flowing Into Metallic and Ceramic Combustion Chamber Walls. SAE Paper 2000-01-1815, 2000.
  • [43] Jackson N.S., Pilley A.D., Owen N.J.: Instantaneous Heat Transfer in a Highly Rated DI Truck Engine. SAE Paper 900692, 1990.
  • [44] Kajiwara H., Fujioka Y., Suzuki T., Negishi H.: An Analytical Approach for Prediction of Piston Temperature Distribution in Diesel Engines. JSAE Review, 2002, vol. 23,s. 429-434.
  • [45] Kamimoto T., Matsuoka D., Matsui T., Aoyagi A.: The Measurement of Flame Temperature and Thermodynamic Analysis of Combustion Processes in a Direct Injection Diesel Engine. Inst. Mech. Eng., London, Paper No C96175, 1975, s. 139-145.
  • [46] Karlsson A., Magnusson I., Balthasar M., Mauss F.: Simulation of Soot Formation Under Diesel Engine Conditions Using a Detailed Kinetic Soot Model. SAE Paper 981022, 1998.
  • [47] Keribar R., Morel T.: Thermal Shock Calculations in I.C. Engines. SAE Paper 870162, 1988.
  • [48] Khan I.M., Greeves G.: A Method for Calculating the Formation and Combustion of Soot in Diesel Engines. Heat Transfer in Flames. Afgan N.H., Beer J.M. (red.). J. Wiley, New York 1974, s. 389-410.
  • [49] Kinowski J.: Some Remarks on the Dynamic Properties of the Timing Gear of an I.C. Engine and Methods for Assessing Incorrect Operation. Proc. Inst. of Aviation, 1976, vol. 61.
  • [50] Kostin A.K., Larionow W.W., Michajlow L.I.: Thermal Loading of Internal Combustion Engines. Handbook. Maszynostrojenie, Leningrad 1979.
  • [51] Koylu U.O., Faeth G.M.: Radiative Properties of Flame-Generated Soot. Journal of Heat Transfer, 1993, vol. 115, s. 409-417.
  • [52] Kumar G.N., Moder J.P., Mongia H., Prakash C.: Development of a Three Dimensional Radiative Heat Transfer Computational Methodology for Aircraft Engine Combustors. AIAA Paper-98-0855, 1998.
  • [53] Kunitomo T., Matsuoka K., Oguri T.: Prediction of Radiative Heat Flux in a Diesel Engine. SAE Paper 750786, 1975.
  • [54] Kwaśniowski S., Sroka Z.J., Zabłocki W.: Modelowanie obciążeń cieplnych w elementach silników spalinowych. OWPW, Wrocław 1999.
  • [55] Lee K.B., Thring M.W., Beer J.M.: On the Rate of Combustion of Soot in a Laminar Flame. Combustion and Flame, 1962, vol. 6, s. 137.
  • [56] Liu Y., Reitz R.D.: Multidimensional Modeling of Engine Combustion Chamber Surface Temperatures. SAE Paper 971593, 1997.
  • [57] Lyford-Pike E.J., Heywood J.B.: Thermal Boundary Layer Thickness in the Cylinder of a Spark-Ignition Engine. Int. Journal of Heat and Mass Transfer, 1984, vol. 27, No 10, s. 1873-1878.
  • [58] Magnussen B.F., Hjertager B.H.: On the Mathematical Modelling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion. 16th Symp. (Inst.) on Combustion. The Combustion Inst., 1976.
  • [59] Matsui Y., Kamioto T., Matsuoka S.: A Study on the Time and Space Resolved Mesurement of Flame Temperature and Soot Concentration in a tu. Diesel Engine by the Two-Color Method. SAE Paper 790491, 1979.
  • [60] Matsui Y., Kamioto T., Matsuoka S.: Formation and Oxidation Process of Soot Particulates in a D.l. Diesel Engine - An Experimental Study via Two-Color Method. SAE Paper 820464, 1982.
  • [61] Matzke W.: Projektowanie głowic silników trakcyjnych. WKiŁ, Warszawa 1979.
  • [62] Matzke W.: Projektowanie rozrządu czterosuwowych silników trakcyjnych. WKiŁ, Warszawa 1989.
  • [63] Menguc M.P., Viskanta R., Ferguson C.R.: Multidimensional Modeling of Radiative Heat Transfer in Diesel Engines, SAE Paper 850503, 1985.
  • [64] Meyer T.R., White R.A.: The Effects of Cylinder Head Deformation and Asymmetry on Exhaust Valve Thermo-Mechanical Stresses. SAE Paper 981034, 1998.
  • [65] Morel T., Keribar R.: A Model for Predicting Spatially and Time Resolved Convective Heat Transfer in Bowl-in-Piston Combustion Chambers. SAE Paper 850204, 1985.
  • [66] Morel T., Keribar R.: Heat Radiation in D.I. Diesel Engines. SAE Paper 860445, 1986.
  • [67] Morel T., Rackmil C.I., Keribar R., Jennings M.J.: Model for Heat Transfer and Combustion in Spark Ignited Engines and Its Comparison with Experiments. SAE Paper 880198, 1988.
  • [68] Morel T., Wahiduzzaman S., Tree D.R., DeWitt D.P.: Effect of Speed, Load, and Location on Heat Transfer in a Diesel Engine - Measurements and Predictions. SAE Paper 870154, 1987.
  • [69] Nagle J., Strickland-Constable R.F.: Oxidation of Carbon Between 1000-2000°C. Proc. 5th Carbon Conference, vol. 1, s. 154-164, 1962.
  • [70] Nakakita K., Nagaoka M., Fujikawa T., Ohsawa K., Yamaguchi S.: Photographic and Three Dimensional Numerical Studies of Diesel Soot Formation Process. SAE Paper 902081, 1990.
  • [71] Niewczas A.: Trwałość zespołu tłok - pierścienie tłokowe - cylinder silnika spalinowego. WNT. Warszawa 1998.
  • [72] Nishida K., Hiroyasu H.: Simplified Three-Dimensional Modeling of Mixture Formation and Combustion in a D.I. Diesel Engine. SAE Paper 890269, 1989.
  • [73] Nishiwaki K., Hofman M.: The Determination of Thermal Properties of Engine Combustion Chamber Deposits. SAE Paper 2000-01-1215, 2000.
  • [74] Oguri T., Inaba S.: Radiant Heat Transfer in Diesel Engines. SAE Paper 720023, 1972.
  • [75] Ravary S., Simon F., Alexandre A., Saulnier J.B.: Definition of the Thermal Conditions around a High Speed Diesel Engine Piston. 11th Int. Heat Transfer Conf., Kyongju (Korea), vol. 5, s. 235-240, 1998.
  • [76] Richtmeyer R., Morton K.W.: Difference Methods for Initial Value Problems, Interscience Publishers, New York 1967.
  • [77] Rozenblit G.B.: Tiepłopieredacza w dizielach. Maszynostroienie, Moskwa 1977.
  • [78] Rush J.H.: Exhaust Port Heat Rejection in a Piston Engine a Preliminary Report. SAE Paper 760766, 1976.
  • [79] Rychter T., Teodorczyk A.: Modelowanie matematyczne roboczego cyklu silnika tłokowego. PWN, Warszawa 1990.
  • [80] Sitkei G.: Heat Transfer and Thermal Loading in Internal Combustion Engines. Akademiai Kiado. Budapest 1974.
  • [81] Sitkei G., Ramanajah G.: A Rational Approach for Calculation of Heat Transfer in Diesel Engines. SAE Paper 720027, 1972.
  • [82] Stradomskij M., Maksimov Y., Asmalovskij V., Malyarov V.: Radiative Heat Transfer in the Cylinder of a Large Diesel Engine. Heat Transfer - Soviet Research, 1978, vol. 10, No. 3, s. 51-54.
  • [83] Taler J.: Teoria i praktyka identyfikacji procesów przepływu ciepła. Ossolineum. Wrocław 1995.
  • [84] Tesner P.A., Snegiriova T.D., Knorre, V.G.: Kinetics of Dispersed Carbon Formation. Combustion and Flame, 1971, vol. 17, s. 253-260.
  • [85] Tien C.L., Lee S.C.: Flame Radiation. Prog. Energy Combust. Sci., 1982, vol. 8, s. 41-59.
  • [86] Van Tyen H.V.: Methode zur Berechnung der Zylinderbuchren-temperaturen in Dieselmotoren, Ph.D. Thesis, Delft University (Netherlands) 1962.
  • [87] Viskanta R. and Menguc M.P.: Radiation Heat Transfer in Combustion Systems. Prog. Energy Combust. Sci., 1987, vol. 13, s. 97-160.
  • [88] Wagner J.R., Marotta E.E.: Thermal Periodic Contact of Exhaust Valves in Spark Ignition Air-Cooled Engines. Journal of Thermophysics and Heat Transfer, vol. 16, No 3, s. 356-365, 2002.
  • [89] Wahiduzzaman S., Morel T., Timar J., DeWitt D.P.: Experimental and Analytical Study of Heat Radiation in a Diesel Engine. SAE Paper 870571, 1988.
  • [90] Wajand J.A., Wajand J.T.: Tłokowe silniki spalinowe. WNT, Warszawa 1993.
  • [91] Whitehouse N.D., Abdui-Hadi M.A.: The Distribution of Soot in the Cylinder of a Quiescent Combustion Chamber Diesel Engine. Proc. Instn. Mech. Engrs. vol. 196, 1982, s. 281-290.
  • [92] Whitehouse N.D., Shahad H.A.K.: "Radiative Heat Transfer Calculations from Soot Clouds for a Quiescent Combustion Chamber Diesel Engine". ASME Symposium FED-20 on Flows in I.C. Engines, T. Uzkan (red.), 1984, s. 89-97.
  • [93] Wiśniewski S.: Obciążenia cieplne silników tłokowych. WKiŁ, Warszawa 1976.
  • [94] Wiśniewski S. Analiza radiacyjnej wymiany ciepła w komorze spalania silnika tłokowego. Mat. Konf. KONES'93, Gdańsk 1993, s. 475-483.
  • [95] Wiśniewski S., Wiśniewski T.S.: Wymiana ciepła. Wyd. 5. WNT, Warszawa 2000.
  • [96] Wiśniewski T.S.: Badanie wymiany ciepła przy periodycznym styku ciał stałych. Rozprawa doktorska, PW, Warszawa 1992.
  • [97] Wiśniewski T.S.: Quasi-steady State Heat Transfer between Periodically Contacting Solids. Advances in Engineering Heat Transfer, Computational Mechanics Publications, 1995, s. 627-636.
  • [98] Wiśniewski T.S.: On Thermal Contact Resistance in Transient Conditions. Proceedings of 9-th Heat and Mass Transfer Symposium, Augustów 1995, s. 449-459.
  • [99] Wiśniewski T.S.: Heat Transfer Problems in Exhaust Valves of Internal Combustion Engines. Journal of KONES, 1995, vol. 2, No 1, s. 558-563.
  • [100] Wiśniewski T.S.: Problems of Thermal Contact Resistance in Internal Combustion Engines. Journal of Polish CIMAC, 1996, vol. 2, No 1, s. 191-196.
  • [101] Wiśniewski T.S.: An Experimental Investigation of Thermal Contact Resistance Between Exhaust Valve Face and Seat. Journal of KONES, 1996, vol. 3, No 1, s. 364-369.
  • [102] Wiśniewski T.S.: Heat Transfer Measurements on Exhaust Valve of 4C90 Engine."Journal of KONES, 1997, vol. 2, No 1, s. 455-462.
  • [103] Wiśniewski T.S.: Experimental Study of Heat Transfer on Exhaust Valves of 4C90 Diesel Engine. SAE Paper 981040, 1998.
  • [104] Wiśniewski T.S., Banaszek J., Furmański P., Rebow M.: Influence of Boundary Conditions on Temperature Distribution in Exhaust Valve of IC Engine by FEM Analysis. Journal of KONES, 1995, vol. 2, No 1, s. 564-570.
  • [105] Wiśniewski T.S., Banaszek J., Furmański P., Rebow M.: Influence of Boundary Conditions on Temperature Distribution in Valve Seat of IC Engine be FEM Analysis. Journal of KONES, 1997, vol. 2, No 1, s. 463-468.
  • [106] Wiśniewski T.S., Furmański P.: Thermal Contact Conductance of Valve Face/Seat Interface in IC Engine. Thermal Conductivity 24, Technomic Publishing Co., 1997, s. 97-104.
  • [107] Wiśniewski T.S., Siemińska-Jankowska B.: An Investigation of Thermal Expansion Influence on Heat Transfer Conditions in Exhaust Valves for IC Engines. Proc. of the 17-th Annual Fall Technical Conf. of the ASME ICED, ICE-vol. 25-1, 1995, s. 81-86.
  • [108] Wlodarski J.K.: Tłokowe silniki spalinowe - procesy trybologiczne. WKiŁ, Warszawa 1982.
  • [109] Worthen R.P., Rauen D.G.: Measurement of Valve Temperatures and Strain in a Firing Engine. SAE Paper 860356, 1987
  • [110] Woschni G.: An Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine. SAE Paper 670931, 1967.
  • [111] Yan J., Borman G.L.: Analysis and In-Cylinder Measurement of Particulate Radiant Emissions and Temperature in a Direct Injection Diesel Engine. SAE Paper 881315, 1988.
  • [112] Yan J., Borman G.: A New Instrument for Radiation Flux Measurement in Diesel Engines. SAE Paper 891901, 1989.
  • [113] Yang J., Pierce P., Martin J.K., Foster D.E.: Heat Transfer Predictions and Experiments in a Motored Engine. SAE Paper 881314, 1988.
  • [114] Yang L.C., Hamada A., Ohtsubo K.: Engine Valve Temperature Simulation System. SAE Paper 2000-01-0564, 2000.
  • [115] Zellat M., Rolland T., Poplow F.: Three Dimensional Modeling of Combustion and Soot Formation in a Indirect Injection Diesel Engine. SAE Paper 900254, 1990.
  • [116] Zienkiewicz O.C., Taylor L.R.: Finite Element Method. Fourth Edition, McGrawHill. London 1989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA8-0005-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.