PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Core loss models in electrical steel sheets with different orientation

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Model strat w blachach elektrotechnicznych o różnym zorientowaniu
Języki publikacji
EN
Abstrakty
EN
Classical core loss models such as two components model or modified Steinmetz model are still popular and used by engineers to loss prediction in electrical machines. They may carry to increase discrepancy between calculated and measured values. This discrepancy increases with grain-orientation and with increasing discrepancy from sinusoidal magnetisation conditions. Statistical loss model shows better applicability for loss calculation however, it requires many measurements in frequency domain what is troublesome. The paper presents the frequency behaviour of classical and statistical loss models in grain and non-oriented electrical steel sheets.
PL
Klasyczne modele strat są wciąż popularne i wykorzystywane przez inżynierów do przewidywania strat maszyn elektrycznych. Mogą one prowadzić do niezgodności pomiędzy obliczonymi i zmierzonymi wartościami strat. Niezgodność wzrasta ze zwiększeniem orientacji ziaren i odkształceniem od sinusoidalnego kształtu strumienia magnetycznego. Statystyczny model strat wykazuje lepszą stosowalność do obliczenia strat jednak wymaga czasochłonnych pomiarów w dziedzinie częstotliwości. Artykuł przedstawia właściwości częstotliwościowe klasycznych i statystycznych modeli strat w zorientowanych i niezorientowanych blachach elektrotechnicznych.
Rocznik
Strony
37--42
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • Czestochowa University of Technology, Department of Electrical Engineering, Al. Armii Krajowej 17, 42-200 Czestochowa, plutaw@el.pcz.czest.pl
Bibliografia
  • [1] Graham C.D. Jr., Physical origin of losses in conducting ferromagnetic materials, Journal of Applied Physics, Vol 53 (1982), No 11, 8276 - 8280
  • [2] Griffits D.J., Podstawy Elektrodynamiki (Fundamental of electrodynamics), PWN (2005)
  • [3] Pfützner H., Zur Bestimmung der Ummagnetisierungsverluste aus den Feldgrößen, Archiv für Elektrotechnik, No 60 (1978), pp.177-179 (in German)
  • [4] Cullity BD., Introduction to Magnetic Materials. Addison- Wesley Publishing Company (1972)
  • [5] Brailsford F., Physical principles of magnetism. D. Van Nostrand Company LTD, London 1966
  • [6] Pfützner H., Rotational magnetisation and rotational losses of grain oriented silicon steel sheets – fundamental aspects and theory. IEEE Trans. on Magnetics, 30 (1994), No 5, pp. 2802 - 2807
  • [7] Bozorth R.: Ferromagnetism. New York, D. van Nostrand Co, 1956
  • [8] Boll R., Weichmagnetische Werkstoffe Einfuehrung in Den Magnetismus, Vacuumschmelze GmbH, Siemens Aktiengesellschaft 1990
  • [9] Matsumura K., Fukuda R., Recent developments of nonoriented electrical steel sheets. IEEE Trans. on Magnetics, Vol. MAG-20, No 5 (1984), pp. 1533 - 1538
  • [10] Steinmetz C.P., On the law of hysteresis. Procedings of the IEEE. 72 (1984), no 2, pp. 197 - 221 (originally published in AIEE Transactions, No 9 (1892), pp. 3-51)
  • [11] Fleming J. A., Handbook for electrical laboraotry and testing room. The Electrician series. Vol. II, London 1901
  • [12] Maruszewic z M., Mierzyjewski A., Magnetic materials. WGH 1954 (in Polish)
  • [13] De Wulf M., Makaveev D., Dupre L., Permiakov V., Melkebeek J., Comparison of methods for the determination of dcmagnetic properties of laminated SiFe alloys, Journal of Applied Physics 93 (2003), No 10, 8543 - 8545
  • [14] Pfützner H., Problems of Loss Separation for Crystalline and Consolidated Amorphous Sof Magnetic Materials, IEEE Trans. on Magnetics, Vol. MAG-27 (1991), No 3 pp. 3426-3432
  • [15] Landgraf F.J.G., Emura M., deCampos M.F.: On the Steinmetz hysteresis law, Journal of Magnetism and Magnetic Materials, No 320 (2008), pp. e531 – e534
  • [16] Reinert J., Broekmeyer A., De Doncker Rik W.A.A.: Calculation of losses in ferro- and ferrimagnetic materials based on the modified Steimetz equation. IEEE Trans. on Industry Applications, 37 (2001), nr 4, 1055-1061
  • [17] Soinski M., Moses A.J., Handbook of Magnetic Materials, Elsevier Science B.V. vol. 8 (1994)
  • [18] Narita K., Imamura M., Frequency dependence of iron losses in 4-Percent Si-Fe single crystal with (100) [001] orientation, IEEE Trans. on Magnetics, 15 (1979), no 2, 981-988
  • [19] Anuszczyk J., Pluta W., Ferromagnetyki miękkie w polach obrotowych. WNT, 2009
  • [20] Landgraf F.J.G., Emura M., Teixeira J.C., de Campos M.F., Effect of grain size, deformation, aging and anisotropy on hysteresis loss of electrical steels. Journal of Magnetism and Magnetic Materials, Vol. 215-216 (2000), 97-99
  • [21] Moses A.J., Pluta W.A., Anisotropy influence on hysteresis and additional loss in silicon steel sheets, Steel Research International, 6 (2005), 450-454
  • [22] Zakrzewski K., Overloss Coefficient for Dynamo Sheet during Axial Magnetization with Nonsinusoidal Flux, Archives of Electrical Engineering, XLVI (1997), no 3. 355-356
  • [23] Cardelli E., Della Torre E., Modelling of hysteresis and dynamic losses in soft ferrites up to radiofrequency level. Physica B, 306 (2001), 240-245
  • [24] Pluta W., Some properties of factors of specific total loss components in electrical steel. IEEE Trans. on Magnetics, vol. 46, no. 2, pp. 322 – 325, Febr. 2010
  • [25] Sakaki Yo, An approach estimating the number of domain walls and eddy current losses in grain-oriented 3% Si-Fe tape wound cores, IEEE Trans. on Magnetics, 16 (1980), no 4, 569- 572
  • [26] Overshoot K. J., The use of domain observations in understanding and improving the magnetic properties of transformer steels. IEEE Trans. on Magnetics, 12 (1976), No 6, 840 - 845
  • [27] Ferro A., Montalenti G., Soardo G. P., On linearity anomaly of power losses vs. frequency in various soft magnetic materials, IEEE Trans. on Magnetics , 11 (1975), no. 5, 1341 – 1343
  • [28] Bertotti G., “General properties of power losses in soft ferromagnetic materials,” IEEE Trans. on Magnetics , 24 (1988), no. 1, 621 – 630
  • [29] Fiorillo F. and Novikov A., An improved approach to power losses in magnetic laminations under nonsinusoidal induction waveform. IEEE Trans. on Magnetics, 26 (1990), no. 5, 2904 – 2910
  • [30] Barbisio E., Fiorillo F. and Ragusa C., Predicting Loss in Magnetic Steels Under Arbitrary Induction Waveform and With Minor Hysteresis Loops. IEEE Trans. on Magnetics, 40 (2004), no. 4, 1810 - 1819
  • [31] Ionel D. M., Popescu M., Dellinger J.S., Miller T.J.E., Heideman R. J. and McGilp M. I., On the variation with flux and frequency of the core loss coefficients in electrical machines. IEEE Trans. on Industry Applications, 42 (2006), no.3, 658-667
  • [32] Popescu M., Ionel D. M., A Best-Fit Model of Power Losses in Cold Rolled-Motor Lamination Steel Operating in a Wide Range of Frequency and Magnetization, IEEE Trans. on Magnetics, 43 (2007), no. 4, 1753-1756
  • [33] Pluta W.A., Influence of the magnetic anisotropy on rotational power loss in electrical steel sheets with Goss texture. PhD Thesis, Technical University of Lodz, Lodz 2001 (in Polish)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA7-0051-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.