Identyfikatory
Warianty tytułu
Optymalizacja aproksymacji okręgu jednostkowego wielokątem
Języki publikacji
Abstrakty
The paper presents two optimization criteria of the approximation of the unit circle by a polygon: minimization of maximum approximation errors and minimization of mean square approximation errors. It is shown that application of the unit circle approximation by a polygon requires to compromise between minimization of three types of errors. The most beneficial approximation parameters values range is obtain for optimal application of the presented unit circle approximation by polygon.
Przedstawiono dwa kryteria optymalizacji aproksymacji okręgu jednostkowego przez wielokąt: minimalizacja błędów maksymalnych aproksymacji i minimalizacja błędów średniokwadratowych aproksymacji. Wykazano, że zastosowanie aproksymacji okręgu jednostkowego wielokątem wymaga kompromisu pomiędzy minimalizacją trzech rodzajów błędów. Dla optymalnego stosowania przedstawionej aproksymacji przedstawiono zakres najkorzystniejszych wartości parametrów aproksymacji.
Wydawca
Czasopismo
Rocznik
Tom
Strony
95--98
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
- Wrocław Uniwwersity of Technology, Chair of Electric and Photonic Metrology, ul. B. Prusa 53/55, 50-317 Wrocław, Jozef.Borkowski@pwr.wroc.pl
Bibliografia
- [1] Marple S.L., Digital Spectral Ana/ysis with Applications, Pren-tice Hali, 1987.
- [2] Kay S.M., Modern Spectral Estimation: Theory and Application, Englewood Cliffs, Prentice-Hall, NJ, 1988.
- [3] Scharf L.L., Statistical Signal Processing: Detection, Estimation and Time Series Analysis, Addison-Wesley, 1991.
- [4] Mitra S.K., Kaiser J.F. (ed.), Handbook for Digital Signal Pro-cess., Wiley, 1993.
- [5] Szmajda M, Górecki K, Mroczka J., Gabor transform, spwvd, gabor-wigner transform and wavelet transform - tools for power qua1ity monitoring, Metrol. Meas. Syst., 17 (2010), 383-396.
- [6] Mroczka, J., Szczuczyński, D., lnverse problems formulated in terms of first-kind Fredholm integral equations in indirect measurements, Metrol. Meas. Syst., 16 (2009), n.3, 333-357.
- [7] Zygarlicki J, Zygarlicka M, Mroczka J, Latawiec K.J., A reduced Prony's method in power-guality analysis-parameters selection, IEEE Trans. Power Del., 25 (2010), n.2, 979-986.
- [8] Zivanovic M., Carlosena A., Nonparametric Spectrum Interpolation Methods: A Comparative Study, IEEE Trans. Instrum. Meas., 50(2001), n.5, 1127-1132.
- [9] Zivanovic M., Carlosena A., Extending the limits of resolution for narrow-band harmonie and modal analysis: a non-paramet-ricapproach, Meas. Sci. Technol., 13 (2002), n.12, 2082-2089.
- [10] Porat B., A Course in Digital Signal Process., John Wiley 1996.
- [11] Rabiner L.R., Schafer R.W., Rader C.M., The chirp-z transform algorithm, IEEE Trans. Audio Electroac., 17 (1969), n.2, 86-92.
- [12] Duda K., Borkowski D., Bień A., Computation of the network harmonie impedance with Chirp-Z transform, Metrol. Meas. Syst., 16(2009), n.2, 299-312.
- [13] Makur A., Mitra S.K., Warped Discrete-Fourier Transform: Theory and Applications, IEEE Trans. Circuits Syst. - l, 48 (2001), n.9, 1086-1093.
- [14] Rife D.C., Vincent G.A., Use of the Discrete Fourier Transform in the Measurement of Frequencies and Levels of Tones, Bell Syst. Tech. J., 49 (1970), 197-228.
- [15] Kamm G.N., Computer Fourier-transform techniques for precise spectrum measurements of oscillatory data with application to the de Haas-van Alphen effect, J. Appl. Phys., 49 (1978), n.12, 5951-5970.
- [16] Jain V.K., Collins W.L., Davis D.C., High-Accuracy Anala Measurements via Interpolated FFT, IEEE Trans. Instrum. Meas., 28 (1979), n.2, 113-121.
- [17] Grandke T., Interpolation Algorithms for Discrete Fourier Trans forms of Weighted Signals IEEE Trans. Instrum. Meas., l (1983), 350-355.
- [18] Andria G., Savino M., Trotta A., Windows and Interpolatim Algorithms to lmprove Electrical Measurement Accuracy, IEB Trans. Instrum. Meas., 38 (1989), n.4, 856-863.
- [19] Offelli C., Petri D., Interpolation Techniques for Real-Timi Multifrequency waveform analysis, IEEE Trans. Instrum. Meas 39(1990), n.1, 106-111.
- [20] Schoukens J., Pintelon R., Van Hamme H., The Interpolatet Fast Fourier Transform: A Comparative Study, IEEE Trans, Instrum. Meas., 41 (1992), n.2, 226-232.
- [21] Quinn B.G., Estimating of Freguency, Amplitude, and Phase from the DFT of a Time Series, IEEE Trans. Signal Proces., 4: (1997), n.3, 814-817.
- [22] Macleod M.D., Fast Nearly ML Estimation of the Parametersc Real or Complex Single Tones or Resolved Multiple Tones IEEE Trans. Signal Proces., 46 (1998), n.1, 141-148.
- [23] Sedlacek M., Titera M., Interpolations in frequency and time domains used in FFT spectrum analysis, Measurement, 23 (1998), 185-193.
- [24] Santamaria I., Pantaleon C., Ibanez J., A Comparative Study of High-Accuracy Frequency Estimation Methods, Mech. Sysi Signal Proc., 14 (2000), n.5, 819-834.
- [25] Borkowski J., LIDFT - the DFT linear interpolation methoc IEEE Trans. Instrum. Meas., 49 (2000), n.4, 741-745.
- [26] Borkowski J., Mroczka J., Application of the discrete Fourier transform linear interpolation method in the measurement c: volume scattering function at smali angle, Optical Eng., 36 (2000), n.6, 1576-1586.
- [27] Borkowski J., Mroczka J., Metrological analysis of the LIDFT method, IEEE Trans. Instrum. Meas., 51 (2002), n.1, 67-71.
- [28] Agrež D., Weighted Multipoint Interpolated DFT to lmprove Amplitudę Estimation of Multifrequency Signal, IEEE Trans. Instrum. Meas., 51 (2002), n.2, 287-292.
- [29] Liguori C., Paolillo A., IFFTC-Based Procedure for Hidder Tonę Detection, IEEE Trans. Instr. Meas., 56 (2007), 133-139,
- [30] Belega D., Dallet D., Frequency estimation via weighted mul point interpolated DFT, IET Sci. Meas. Tech., 2(2008), n.1, 1-8
- [31] Chen K.F., Li Y.F., Combining the Hanning windowed interpolated FFT in both directions, Computer Phys. Commun., 178 (2008), 924-928.
- [32] Li Y.F., Chen K.F., Eliminating the picket fence effect of thefast Fourier transform, Computer Phys. Com... 178(2008), 486-491
- [33] Belega D., Dallet D., Multifrequency signal analysis by Interpolated DFT method with maximum sidelobe decay windows Measurement, 42 (2009), 420-426.
- [34] Yang X.Z., Li H.Y., Chen K.F., Optimally averaging the interpolated fast Fourier transform in both directions, IET Sci. Meas, Technol., 3 (2009), n.2, 137-147.
- [35] Chen K.F., Jiang J.T., Crowsen S., Against the long-range spectral leakage of the cosine window family, Computer Phys Commun., 180 (2009), 904-911.
- [36] Chen K.F., Mei S.L., Composite Interpolated Fast Fouriet Transform With the Hanning Window, IEEE Trans. Instrum, Meas., 59 (2010), n.6, 1571-1579.
- [37] Borkowski J., Mroczka J., LIDFT method with classic data windows and zero padding in multifrequency signal analysis, Measurement, 43 (2010), 1595-1602.
- [38] Duda K., DFT Interpolation Algorithm for Kaiser-Bessel and Dolph-Chebyshev Windows, IEEE Trans. Instrum. Meas., 60 (2011), n.3, 784-790.
- [39] Harris F.J., On the use of windows for harmonie analysis with the Discrete Fourier Transform, Proceedings of the IEEE, K (1978), n.1, 51-83.
- [40] Borkowski J., Metody interpolacji widma i metoda LIDFT t estymacji parametrów sygnału wieloczęstotliwościowego, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA7-0045-0025