PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A new class of analytic functions based on Ruscheweyh derivative

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we introduce a new class [formula/wzór] consisting of analytic functions with negative coeffcients and investigate various properties and characterization of the class. The results include coeffcient estimates, distortion theorem, closure theorems and integral operators for the class [formula/wzór]. Also radii of close-to-convexity, starlikeness and convexity are determined.
Rocznik
Tom
Strony
103--115
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
Bibliografia
  • [1] H.S. Al-Amiri, On Ruscheweyh derivatives, Ann. Poln. Math., 38 (1980), 87-94.
  • [2] H.S. Al-Amiri, On a subclass of close-to-convex functions with negative coefficients, Math. (Cluj), 31:1(54) (1989), 1-7.
  • [3] O. Altintas, A subclass of analytic functions with negative coefficients, Hacettepe Bull. Natur. Sci. Engrg., 19 (1990), 15-24.
  • [4] A.A. Attiya and M.K. Aouf, A study on certain class of analytic functions defined by Ruscheweyh Derivative, Soochow Journal of Mathematics, 33:2 (2007), 273-289.
  • [5] S. Bulut, A new subclass of analytic functions de_ned by generalized Ruscheweyh differential operator, Int. J. Math. Math. Sci., Article ID 134932, 2008, 12 pp.
  • [6] V.P. Gupta and P.K. Jain, Certain classes of univalent functions with negative coefficients. II, Bull. Austral. Math. Soc., 15 (1976), 467-473.
  • [7] V. Kumar, On a new criterion for univalent functions, Demonstratio Math. 17 (1984), no. 4, 875-886.
  • [8] K.I. Noor and S. Hussain, On certain analytic functions associated with Ruscheweyh derivatives and bounded Mocanu variation, J. Math. Anal. Appl., 340 (2008) 1145-1152.
  • [9] S. Owa and M.K. Aouf, On subclasses of univalent functions with negative coefficients, II, Pure Appl. Math. Sci., 29:1-2 (1989), 131-139.
  • [10] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115.
  • [11] S.M. Sarangi and B.A. Uralegaddi, The radius of convexity and starlikeness for certain classes of analytic functions with negative coefficients I, Rend. Acad. Naz. Lincei, 65 (1978), 38-42.
  • [12] H.M. Srivastava, S. Owa and O.P. Ahuja, A new class of analytic functions associated with Ruscheweyh derivatives, Proc. Japan Acad., 64(A) (1988), 17-20.
  • [13] H.M. Srivastava, N-Eng Xu, Ding-Gong Yang, Inclusion relations and convolution properties of a certain class of analytic functions associated with the Ruscheweyh derivatives, J. Math. Anal. Appl., 331 (2007) 686-700.
  • [14] B.A. Uralegaddi and S.M. Sarangi, Some classes of univalent functions with negative coefficients, An. Stiint. Univ. Al. I. Cuza" Iasi Sect. I a Mat. (N.S.), 34 (1988), 7-11.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA7-0043-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.