Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we introduce the concept of bounded φ- variation function, in the sense of Riesz, dened in a rectangle [wzór]. We prove that the linear space [wzór] generated by the class [wzór] of all φ-bounded variation functions is a Banach algebra. Moreover, we give necessary and sucient conditions for the Nemytskii operator acting in the space [wzór] to be globally Lipschitz.
Czasopismo
Rocznik
Tom
Strony
5--23
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
autor
autor
autor
- Escuela de Matematicas, Universidad Central de Venezuela, Caracas-Venezuela|, wadie@ula.ve.
Bibliografia
- [1] R. Adams, J.A. Clarkson, Properties of functions f(x; y) of bounded variation, Trans. Amer. Math. Soc. 36 (1934), 711 - 730.
- [2] J. Albrycht, W. Orlicz, A note of modular spaces II, Acad. Polish. Sci. Math. Astronom. Phys. 3 (1962), 99 - 106.
- [3] V.V. Chistyakov, Generalized variation of mapping with applications to composition operators and multifunctions, Positivity 5 (2001), 323 - 358.
- [4] V.V. Chistyakov, Superposition operators in the algebra of functions of two variables with finite total variation, Monatshefte für Mathematik 137 (2002), 99 -114.
- [5] J. Ciemnoczołowski, W. Orlicz, Composing functions of bounded φ-variation, Proc. Amer. Math. Soc. 96 (1986), 431 - 436.
- [6] J.A. Clarkson, R. Adams, On definitions of bounded variation for functions of two variables, Trans. Amer. Math. Soc. 35 (1933), 824 - 854.
- [7] Z. Cybertowicz, W. Matuszewska, Functions of bounded generalized variation, Annales Societatis Mathematicae Polonae (1977), 29 - 52.
- [8] G.H. Hardy, On double fourier series, and especially those which represent the double zeta-function with real and inconmeasurable parameters, Quart. J. Math. Oxford. 37 (1905/06), 53 - 79.
- [9] C. Jordan, Sur la série de Fourier, C. R. Acad. Sci. Paris 2 (1881), 228 - 230.
- [10] M.A. Krasnosel'skij, Ya. B. Rutickii, Convex Functions and Orlicz Spaces, (translation L. Baron) P. Noordhoff Ltd., Groningen, 1961.
- [11] R. Leśniewicz, W. Orlicz, On generalized variations II, Studia Mathematica T. XLV (1973), 71 - 109.
- [12] W. Matuszewska, W. Orlicz, On some properties of functions of bounded φ-variation in sense of Riesz, Annales Societatis Mathematicae Polonae (1992), 91 - 102.
- [13] Yu. T. Medved'ev, A generalization of certain theorem of Riesz (in Russian), Uspekhi Mat. Nauk. 6 (1953), 115 - 118.
- [14] N. Merentes, A new characterization of the Riesz class Ap, Annales Univ. Sci. Budapest 32 (1989), 91 - 95.
- [15] N. Merentes, S. Rivas, El Operador de Composición en Espacios de Funciones con algun tipo de Variacion Acotada, p. 256, Facultad Ciencias-ULA, Merida-Venezuela, 1996.
- [16] F. Riesz, Untersuchungen uber Systeme integrierbarer Funktionen, Math. Annalen 69 (1910), 449 - 497.
- [17] G. Vitali, Sulle funzioni integrali, Atti Accad. Schi. Torino CI Sci. Fis. Mat. Natur. 40 (1904/05), 1021 - 1034.
- [18] N. Wiener, The quadratic variation of function and its Fourier coefficients, Massachusett J. Math. 3 (1924), 72 - 94.
- [19] L.C. Young, Sur une généralisation de la notion de variation de pussance piéme au sens de n. wiener et sur la convergence des séries de Fourier, C. R. Acad. Sci. París, Ser A-B 240 (1937), 470 - 472.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA7-0039-0011