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1. INTRODUCTION   

 

A variety of data on the behaviour of a controlled structure can be available, as multiple are 

also the methods of gathering such data. Reference can be made here to such techniques as 

the geodetic, geotechnical and photogrammetric measurements, remote sensing, simulations 

of structural performance, as well as expert reviews. Such data provide potential inputs for 

evaluation of the safety of a structure. Figure 1 contains a flow diagram showing an ideal-

ised concept of the process, which involves complete processing of all available data.  

 

Data (1)

Processing
of available

data

Analysis 
of structural 

safety

Data (2)

Description
of structural
behaviour

Assessment
of structural

safety....................
 

                              
 

Fig. 1. Flow diagram for evaluation of structural safety. 

 

Such an opportunity could be offered by a global system for structural safety assessment. 

 

Taking for granted that the integrity of the data obtained from each source is ensured, the 

key advantages that can be seen in the integration of information resources seem to be as 

follows:  
 

 possibility of verifying the consistency of multiple-source data and hence, better relia-

bility of data processing; 

 extended description of structural behaviour; 

 more reliable and accurate assessment of structural safety. 
 

Certain rules and methods for integration of measurement data should obviously be devel-

oped not only for global (specialised) systems of structural safety control, but also for more 

or less interlinked geodetic systems for monitoring of displacements, that would incorporate 

outputs from many instruments and measuring devices. To surveyors, it is important what 

kind of information would be processed by such systems and how they would be linked to 

the said specialised systems. There seems to be no general answer to this question. Critical 



elements here are the type of structure, its current condition, as well as the scope and the 

broadly defined requirements of specialised monitoring (including the accuracy and fre-

quency of data updates). Considered as an exemplary solution for safety control of water 

reservoirs and dams, because supported by success stories worldwide, can be the deploy-

ment of geodetic systems for monitoring of displacements, that are part of specialised sys-

tems for safety control of such structures (Duffy et al, 2001). Geodetic measurements are 

integrated, in those systems, with data obtained by means of other measurement methods.  
 

To resume the discussion started by Chrzanowski at al (1985 and 1986), Chen and Yang 

(1994) and Prószyński (1999), we will concentrate our attention on data integration within 

geodetic monitoring systems, confining ourselves to quantitative information of discrete 

type.  

 

2. PRERECQUISITES FOR DATA INTEGRATION 

 

The data denoted as l1, l2, ..., ln, will be considered as continuous random variables, each 

with a normal distribution, a zero expectation value, and an estimable dispersion parame-

ter. 

 

By referring here to data integration, we will mean the integration of data for clearly de-

fined purposes, e.g. in order to determine the coordinates of points, the displacements of 

points, the displacements of and/or deformations in the body of a structure, etc. According-

ly, we will deal with a data integration method that should be recognised as fundamental in 

geodetic monitoring of displacements, that is, based on an explicitly defined parametric 

model. There is no question that with some other data integration methods being also avail-

able for structural safety assessment the scope of methodological considerations has to be 

narrowed.  

 

We will say that data l1, l2, ..., ln can be integrated with each other if:  

a) each data can be represented as a (at least 
1C  class) function of parameters 

u21 X,...,X,X  which we are interested in for a strictly defined purpose 
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In addition to pseudo-observations (i.e. ii Xl ), notation (1) includes a specific type 

of data representing a certain relationship which is formed, to our understanding, by 

parameters u21 X,...,X,X , i.e. 0)X,...,X,X(f u21i  (e.g. an equation corresponding 

to our knowledge of the point’s motion parameters); then, as the value of random 

variable il  in notation (1),  we put zero; 

b) that of data l1, l2, ..., ln which due to its nature depends on the reference system must 

be expressed in a single common reference system; 

 



c) for each data we are able to estimate the accuracy as standard deviation i,l  or (less 

often) limit error i,l . 

Such estimation allows one to include the randomness of available data and use the 

following well-known observation equation: 
 

                         i
o
i

obs
iui,u2i,21i,1 llxa...xaxa     ;    i,l                                 (3) 

 

 This also applies for data representing knowledge of a structure’s behaviour. 

 In this case 0lobs
i , and  i  is the true error of such data. 

 If we know only limit error i,l  of any data, we can determine standard deviation 

i,l  based on the assumption that the distribution of variable l1 is normal. 
 

Hence, the fulfilment of the prerequisites for data l1, l2, ..., ln, as described above, implies 

that a mathematical (stochastic) model is available to us which cross-relates individual sets 

of such data to each other and allows, provided that certain algebraic requirements are also 

met, to include all such data in the determination of its parameters and estimate the accura-

cy of such determinations.  
  

As it can be seen from the approach presented here, creating models and integrating data 

for a specified purpose are strictly interrelated. The concept of such a relationship is 

demonstrated in the following notations, i.e. 
  

                       l1, l2, ..., ln   {wM}                    M   l1, l2, ..., lk                                      (4) 
 

Meant to be integrated, data l1, l2, ..., ln define a certain set of properties {wM} that should 

be inherent in their integration model, without providing a clear definition of what form 

such a model might take. With the specific model M being available, only certain types of 

data can be integrated, i.e. l1, l2, ..., lk. 
 

The integrability of data l1, l2, ..., ln through model M with parameters 
uxxx ,...,, 21
 can be 

expressed as follows:     

 )x,...,x,x(M  l...ll u21n21  (5) 
 

If any of the obtained data does not meet the requirements for integrability with a group of 

the remaining data which are integrable with each other through an available model, they 

cannot be used to estimate the parameters of such a model. When describing the behaviour 

of a structure, they could be used as quantitative or only qualitative controls, however, that 

is, they can be supportive of structural safety assessment. With non-integrable data being 

identified as sr l,l  the foregoing can be expressed as follows: 
 

 )x,...,x,x(M  l...ll u21n21 ;   sr l,l     sru21 l,l    ;x̂,...,x̂,x̂      (6) 

 

Data sr l,l  will be complementary to the estimated parameters of a model and help inter-

pret the behaviour of a structure. It is clear that full output information will also contain 

the estimated accuracy of parameters and complementary data.  



The integrability of data through a specific model does not ensure the suitability of such a 

model for particular data values. The lack of suitability may suggest the need to use another 

model. 
 

Finally, we will see that the integration of the obtained data l1, l2, ..., ln can be interpreted as 

their transformation into a set of parameters u21 x,...,x,x , which we are interested in due to 

some reasons,  i.e. {l} → {x}, which does not include any complementary data.  
       

The target integration model for measurement data l can also be obtained by combining 

two models. By defining the input functional model as 
 

 Ax = l (7) 
 

and assuming that x can be input information to the model 
 

 Bc = x (8) 
 

where B – coefficient matrix, c – parameter vector of a new model, 
 

we will finally obtain the target functional model for integration of data l, which will be as 

follows: 

 lHc , where  H = AB (9) 
 

For practical reasons, it will certainly be used as a stochastic model, i.e. with equations of 

type (3). 

By using some examples of geodetic systems for monitoring of displacements, it can be 

demonstrated (Chrzanowski et al 1986, Chen and Yang 1994) that target model (9) can al-

low for integration of additional measurement data, which are non-integrable in input 

model (7). 
 

With the correctness of the model itself, which is assumed in the considerations above, only 

the inaccuracy of data entered into it is taken into account.  

       

3. EXAMPLES OF DATA INTEGRATION THROUGH A PARAMETRIC MODEL 

 

The simplest form of data integration is a model for multiple measures of a single quantity, 

i.e. a one-parameter model. We will call it an elementary model and identify it as Me. We 

deal with it when preparing data for each of the following examples of integration methods: 
 

a) integration through a control network geometry model (geometric model - gM ) 

 

Such is a static model of the control network relating to a single epoch (parameters – coor-

dinates of the network points) or a pair of epochs (parameters – components of displace-

ment vectors of the network points). 
 

Every measurable quantity, which can be expressed as a function of such parameters, is 

assigned an observation equation and can be incorporated into a model together with its 

measurement result and estimated accuracy. Thus, inclinometer or pendulum measurement 

data can also be included. These are the models which can be used to determine the dis-

placements of selected points of a structure if the motion of such points during measure-



ment can be considered negligible in terms of measurement accuracy. They are exact mod-

els in which only the inaccuracy of measurement data inputs is considered. 

The interpretation value of the displacements identified in a geometric model is conditioned 

by the need to record certain complementary quantities, which, in model  gM , are not inte-

grable with the measurement results of the network elements (e.g. time of day, building 

temperature, wind direction and strength, progress of construction works), that is, infor-

mation that could be used to provide a more reliable assessment of the behaviour of a struc-

ture. 
 

b) integration through the point motion model of a single-epoch control network (kinematic 

model – kM ) 
 

The parameters here are the coordinates of the network points at a certain moment of time, 

as well as the velocities and acceleration rates, if any, of such points during network meas-

urement. This model, which serves here only as an example of how measurement data can 

be integrated, is used to create multi-epoch kinematic models. 
 

These are the models which can be used to determine the displacements of selected points of 

a structure if motion of such points, even during a single network measurement, should be 

considered significant in terms of the measurement accuracy of the elements of such a net-

work. Then a properly selected model of motion should be applied to enable integration of 

measurement data obtained at various moments of time. In general, these models are not 

exact models. As with the geometric model, additional physical data should be collected to 

raise the interpretation value of determined parameters.  
 

c) integration through the geometric model of structural behaviour (deformation model – 

oM ) 
 

This model incorporates only geometric effects (deformations, rotations, mutual displace-

ments of structural elements) of various factors affecting the structure under review. In 

addition to measurement data integration as in model gM , it is possible, when using an ap-

proximation model (e.g. Chrzanowski et al, 1986), to integrate the measurement data of lin-

ear deformations and measure any inclination changes at short sections set out from the 

certain point of a structure. Models oM  are, in general, approximate models which are re-

lations defined in space domain or time-space domain. As with models gM  and kM , addi-

tional physical data should be collected to raise the interpretation value of determined pa-

rameters. We will see here that, given the material integrity and non-deformability of the 

body of a structure, instead of model oM  we can use the geometric ( gM ) or kinematic 

( kM ) model as the basis for integration of measurement data. 
 

d) integration through the physical model of structural behaviour (strength model - wM ) 
 

These are the so-called cause-effect models which describe relations between the broadly 

defined loads (e.g. dead weight, useful load, temperature variations, wind pressure) that 

work on a structure (causes) and the resultant displacements and deformations of such a 



structure (effects). They can also be relations representing the transformation of a structure 

from one state to another as a result of such effects.  

In addition to measurement data integration as in model oM , it is possible to integrate 

here, among other data, the results of stress measurements that are conducted at short sec-

tions set out from the certain point of a structure.  
 

In general, the relations making up the model of structural behaviour are relationships 

showing a certain degree of approximation to the reality, and it is necessary to verify their 

correctness by confronting them with collected information.  
 

Theoretically, there are many possibilities of creating cause-effect models. However, the 

complexity of how a structure may actually respond to the loads applied to it makes such 

models too complicated and, at the same time, too little exact when confronted with the ac-

curacy levels of measurement results. Therefore, in practical (non-research) applications 

they are superseded by simplified analysis based not only on the relevant theoretical know-

how of construction engineers, but also on their expertise and technical intuition. Noticea-

bly, measurement data (including that obtained with surveying methods) are increasingly 

used to upgrade (calibrate) the models of structural behaviour, which are primarily based 

on theoretical solutions. The cause-effect models seem to become an important tool in the 

future to process the behavioural data and assess the security levels of structures. They will 

create a convenient platform for closer collaboration between structural mechanical engi-

neers, geotechnicians and engineering surveyors, that is, interdisciplinary collaboration.  

 

4. PRACTICAL EXAMPLE 

 

Figure 2 provides a schematic view of the results of monitoring the displacements of select-

ed points of a building in time interval 122,1 ttΔt  ( t1- initial measurement, t 2 - current 

measurement), which include:  
 

- vectors of vertical displacements ( pV ) relative to the reference system that is external to 

the structure (measurement technique: precise levelling network); 

- vectors of horizontal displacements ( pH ) relative to the reference system that is external 

to the structure (measurement technique: trigonometric network);  

- inclination changes (αV) of short survey bases in selected places of the structure  (meas-

urement technique: electronic level); 

- change in temperature outside the building (ΔT ). 
 

 So, we have the following set of data:  
 

                                  ΔT,...,,,...,p,p,...,p,p 2,V1,V2,H1,H2,V1,V  
 

The integration of all such data may pose a serious problem. The body of a building may be 

heterogeneous, e.g. dilated segments of the structure, self-supporting wall facing that loosely 

interacts with the main structure. Due to various types of impacts (including temperature 

variations), the building is subject to deformations and displacements. The model that could 

integrate all collected information would be very complex, and considering that   
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Fig. 2. Displacements of selected points of the building and displacement components 

for the body of the building. 
 

the outer wall facing becomes deformed on its own, creating such a model would be hardly 

practicable. Another problem in integrating the said data may be that it is difficult to en-

sure the integrity which is required in respect of the reference system for positional data, as 

the reference bases are not identical and the measurements cannot be conducted at the 

same time.  
 

If omitting possible deformations and mutual displacements of structural elements and con-

sidering the temperature readings as complementary information, geometric model gM  

with the parameters as shown in figure 2 can be used, i.e. 
 

 ),,,p,p,p(M......pp...pp zyxzyxg2,V1,V2,H1,H2,V1,V   ;    ΔT  

   zyxzyx ˆ,ˆ,ˆ,p̂,p̂,p̂ ;   ΔT  

 

If only vertical displacements and temperature readings were available, we would write as 

follows: 
 

 ),,p(M...pp yxzg2,V1,V   ;     ΔT                   yxz ˆ,ˆ,p̂ ;   ΔT  

 

 

5. CERTAIN RELIABILITY FEATURES OF MEASUREMENT DATA INTEGRATION 

MODELS 

 

From the generally known dependence pertaining to internal network reliability, i.e.  

 R = I – Q (10) 
 

where: R – reliability matrix, Q – covariance matrix of adjusted observations in a standard-

ised system, I – identity matrix,  
 

it follows immediately that 



- higher gain in the accuracy of each observation (that is, lower ratio i,li,l̂i /u ) due to 

its involvement in the adjustment of all observations corresponds to a higher degree of its 

controllability by the remaining observations  
 

 2
i

2

iiii u11Q1R
i,l

i,l̂
          i = 1,2, ...,n (11) 

- if the a priori declared standard deviation of an observation is changed, the dependence 

is maintained 
 

                                                     
i,l

ii

i,l

ii QR
                                                              (12) 

 

where, in a system of more complex structure, the detailed form of these derivatives could 

be difficult to derive because ).,...,,(f n,l2,l1,li,l̂
 

 

Given that the pre-estimated accuracy of the observations is correct, we will trace the effect 

of accuracy disproportions in an adjustment model, assuming elementary model eM  for 

convenience. 
 

We will consider a system with two (non-correlated) observations,  
 

 1
obs
1 vlx     1=  (13) 

 2
obs
2

vlx   2  = k  ;                             k  1                              
 

Matrix R and resultant reliability coefficients 
1,V̂
, 

2,V̂
 for 

obs
1

l and 
obs
2

l  respectively, will 

be as follows:  
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Let us look at the reliability levels of the observations when coefficient k increases as com-

pared to when k = 1 (see Fig. 3):   
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Fig. 3.  Differences in reliability levels due to disproportion in the accuracy of observations. 
 

- an input disproportion in the standard deviations of the observations results in an 

identical disproportion of the reliability levels;     k
1

2

1,ˆ

2,ˆ

V

V
 

- a less accurate observation gains in accuracy more than does a more accurate obser-

vation, and it also becomes more reliable at the expense of the reliability level of a 

more accurate observation (as we have 12

2,ˆ
2

1,ˆ VV
). 

It can also be demonstrated that 
k

0lim
1,V̂  and   

k

1lim
2,V̂ , which means that an ob-

servation with unlimitedly high inaccuracy can be fully controlled with an error-free obser-

vation.  In fact, it is a system that does not meet the internal reliability requirement 

(Prószyński, Kwaśniak, 2002), but it provides a certain idea of what (negative) effects the 

observations of considerably varied accuracy levels can bring about when combined.  

 Now let us consider a system of type (13), but with n observations, using observation 

weights to facilitate the notation of the final expressions, i.e.  
 

 ii vlx  
i

o

p
i  i = 1, 2, ..., n (15)         

Now we will specify the form of the i-th diagonal term for matrices Q and R  
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For such observations il , jl  that ji pp ,  we will have jjii QQ  and jjii RR . We will 

see that the reliability level of an observation depends on the relative sum of the weights of 

the remaining observations.  

The impact of different observation accuracies in system (15) (for n = 3) upon the  
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Fig. 4. Changes in reliability levels due to the differentiation of observation weights  

(the system with three observations). 
 

 

distribution of internal reliability coefficients is illustrated in figure 4. If the accuracy levels 

of observations are identical, i.e.  p1 = p2 = p3 = 1, we have 
3
2

i,V̂
 (i =1, 2, 3), so such a 

system meets the internal reliability requirement, even with a certain margin. If the accura-

cy levels differ, however, e.g.  p1 =1, p2 = 2, p3 = 3, we will have 
6

5
1,V̂

, 
3

2
2,V̂

, 

2

1
3,V̂

, which means that the most accurate observation (i.e. 3l ) does not meet that 

requirement any more.  
 

From (16) we will derive 
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which means that the degree of gain in accuracy and the reliability coefficient of ith obser-

vation respond to any change in the weight of that observation in proportion to its initial 

reliability level, and any weight increase results in a higher accuracy, that is, a lower relia-

bility level. The opposition of these effects arises directly from general dependence (10). 
 

In systems that are structurally more complex, which are the subject of displacement moni-

toring, the features described above occur as well, but not that transparently.  
 

Now let us consider how the correctness of pre-estimated accuracy is significant to non-

measurement information when the parameters of a model are to be estimated. Estimating 

the accuracy of such information satisfactorily may present much difficulty. It is clear that 

of paramount importance to the correctness of the estimated model parameters are the real-

istic estimations of the a priori accuracy ( i ) for each data incorporated into such a model. 

They should be such that the values of relation 
i

i ,  where εi – unknown true error of the 

ith data – can be a sample taken from distribution N(0.1). Since we can encounter a high 

uncertainty when estimating  for non-measurement information, let us consider the ef-

fects of understating and overstating this value: 
 

ˆ  - an overstatement of the pre-estimated accuracy may cause an effect of gross er-

ror in this data, and consequently, as discussed above, a weakening of its con-

trollability by the remaining information; 
 

ˆ  - an understatement of the pre-estimated accuracy may weaken the impact of such 

data upon the solution of a system, and at the same time increase its controllabil-

ity by the remaining information.  
 



This implies that if non-measurement information is introduced into a system, it is safer to 

use, at least at the beginning, an understatement of the pre-estimated accuracy.  

 

6. FINAL CONCLUSIONS 

 

The following general conclusions can be drawn from the research and considerations pre-

sented in this study:  

- analysis of the reliability features of the models used to integrate measurement data with 

varied accuracy levels confirms the suitability of the two-step measurement data processing 

concept (Papo, Perelmuter 1993) for physical models wM . Pursuant to this concept, meas-

urement results in geometric model gM should be processed first, as the model is highly 

reliable and allows for correct estimates of the actual accuracy of the information it inte-

grates; 
 

- with data integrated in a kinematic model, where the point motion model (the motion 

model is either preset or determined) is employed, the geodetic system for monitoring of 

displacements can remain autonomous. It is legitimate except that a competent specialist 

must determine the way of discretising the structure under review, an observation timeta-

ble, and the accuracy requirements.  

- data integration which requires knowledge of the deformation model of a structure causes 

that the geodetic system for monitoring of displacements cannot be autonomous, but it can 

only remain a constituent element (module) of a specialised system of structural safety con-

trol.  
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