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1. INTRODUCTION 

 

The variety of measuring tasks performed with theodolites or electronic tachimeters is 

the reason why in some cases the working conditions of an instrument are quite 

different from those prevailing in typical geodesic measurements. 

 

Sometimes, for instance, it may be necessary to measure near zenithal directions in 

relation to the points above the theodolite position. A situation like this may occur, e.g. 

during the measurement of roof structure deformations. With such directions the 

influence of  both various instrumental errors and the main axis deflection of a 

theodolite increases considerably so it would be reasonable to analyze this influence and 

find out if such targets  can be used for the tasks involving the positioning of points 

inaccessible to direct measurements.  

 

2. ANALYSIS OF INSTRUMENTAL ERRORS INFLUENCE ON ANGLE 

MEASUREMENTS WITH A THEODOLITE 

 

The basic construction of a theodolite is generally well-known and has been described in 

numerous textbooks, that is why I will confine myself to the elements which are essential 

for the present discussion. 

 

2.1. Deflection of the main theodolite axis  

 

As everybody knows, the main axis of a theodolite is brought to its vertical position 

following the indications of an alidade level. The accuracy of this level is usually several 

dozen 
cc

 (e.g. for a seconds theodolite it is  c. 60
cc

 ). As a result, the main axis of a 

theodolite will be deflected  from plumb, which, in return, will influence both the 

measurement of the horizontal  and  the vertical angle.  

 

In order to determine the influence of a theodolite vertical axis deflection on the circle 

readout, the total deflection angle  of the theodolite main axis is divided into two 

components. One of the components lies on the collimation plane (l) and the other (c) 

is perpendicular in relation to the former. The influence of the main axis deflection on 

theodolite circle readout is expressed by the following equations: 
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As the above equations indicate, the horizontal circle readout is mainly influenced by 

the component transverse to the observed direction c, whereas the vertical circle 

readout is, first of all, influenced by the lengthwise component l. If we assume that the 

angle  is a small one, then it is possible to simplify somewhat the above relationships. 
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Equations (3) and (4) are generally available in the literature on the subject. As they are 

approximations, their application is connected with certain errors  resulting from their 

simplification. Approximation errors are functions of deflection constitutive values as 

well as the zenithal angle. On the basis of equation (1) and (2), the values of these errors 

can expressed as follows; 
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Permissible deflection values of the main axis of a theodolite dependent on the zenithal 

angle and permissible correction errors of  the Hz readout  are shown in the table 

below. 

Table 1. Maximum deflection values for permissible Hz circle correction erros. 
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As for zenithal angle corrections, the  appropriate values are shown in the following 

table: 

Table 2. Maximum deflection values for permissible V circle correction erros. 
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It can be easily observed that approximation affects, to a large extent, the size of ΔHz 

obtained from equation (3). 

 

In the tables above an area was shaded, for which the assumed accuracy of deflection 

influence could be determined with an alidade accuracy level of 60
cc

. For smaller 

zenithal angles (the unshaded area)  strict equations  should be used. 



In modern digital theodolites used in industrial measurement systems to compensate for 

the influence of  the main axis deflection on the graded circle readout, automatic 

systems are applied. Their main part are two-way electronic levels defining both 

constitutive deflections. On the basis of their readout, the controlling theodolite 

processor introduces appropriate amendments not only to the V vertical component but 

also to the Hz horizontal. As a result, it was possible to perform precise observations 

also with steep targets.   

 

Current compensation of  the theodolite  main axis  is  especially important  in the case 

of position changes  of a theodolite connected with , e.g.  the tripod subsiding.  

 

2.2. Other instrumental errors affecting the measurement of angles with a theodolite 

 

Apart from the main axis deflection, the readout of a theodolite is also affected by the 

so-called instrumental errors resulting from the difference between the geometric 

definition of individual theodolite elements and their real mechanical-optical 

realization.  

 

In the context of the present discussion, the closest attention should be devoted to those 

instrumental errors, the influence of which depends on  the zenithal angle. They are 

mainly of the collimation and inclination kind. 

 

The influence of collimation error on a horizontal error measurement is expressed by 

the equation: 
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Where k is the angle value of collimation error. 

 

As a matter of fact, the average of two measurements of a given direction in two 

telescope positions is free from collimation error, but there are situations when the 

measurement in two telescope positions is not possible. 

 

The influence of  inclination error on the readout of  a horizontal circle is described by 

the following relationship: 

sinHzi = tg ictgV                                                            (8) 

where i is the angular value of inclination error. 

 

In the case of modern theodolites, this error is practically non-existent, however with 

steep targets its influence can be noticeable. 

 

Collimation error is overlapped with a change in the position of  the target axis 

coinciding with a focusing change . It results from the non-rectolinear  movement of  the 

inner focusing lens.  According to Płatek 1992, for a T3000 theodolite, with a focusing 

change of  the 0.6 -∞ range ,  a change in the position of a target axis  does not exceed 

1.5
cc

 (0.5”).  

 

In the construction of digital theodolites rigorous adherence to geometrical conditions 

ceased to be essential as most of instrumental errors can be numerically compensated. It 



also concerns such errors as collimation, inclination or that of vertical circle index. 

Determining the values of errors alone is carried out as a standard measurement 

procedure. The possibility of determining the above mentioned errors and accounting 

for their influence on the graded circle readout is quite essential, especially as 

mentioned earlier, sometimes it is not possible to measure the direction to the observed 

points in two telescope positions. 

 

2.3. The influence of instrumental errors on the measurement of a horizontal direction 

 

For near zenithal directions the horizontal components of spatial directions will be, to a 

large extent, influenced by collimation, inclination errors, as well as those of vertical 

theodolite axis deflection from plumb.  

 

With precise electronic theodolites it is possible to correct digitally the influence of 

collimation and inclination, although it is essential to have angular values of each of 

these errors determined by means of a special measurement procedure. This 

determination, as every other measurement, is burdened with a certain error, as a result 

of which we cannot ignore their residual values. Also the influence compensation system 

for the theodolite main axis deflection from plumb has its high, however limited, 

accuracy. 

 

For near zenithal directions the value of coefficients in the equations determining the 

influence of collimation, inclination and deflection from plumb errors on the Hz readout 

grow endlessly, as a result of which this influence even for small values of the 

aforementioned errors will be quite essential. To illustrate the issue, let us analyze the 

influence of  the above mentioned errors on the Hz readout for various V values. Let us 

assume the following values of instrumental errors: 

- residual collimation error 3
cc

, 

- residual inclination error  3
cc

, 

- error of determining the component of  a theodolite main axis deflection 1
cc.

. 

 

The results of the analysis are presented in the table below. Subsequent lines of this 

table represent; ΔHzk collimation influence, that of ΔHzi, standing axis deflection Hz, 

a well as the combined, average influence of the three above mentioned errors specified 

on the basis of the following equation: 
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Table 3. Influence of instrumental errors on Hz circle readout. 

V [g
] 

Wpływ [cc] 

100 50 20 10 5 2 1 0.50 0.20 0.10 0.05 0.01 

Hzk  
3.0 4.2 9.7 19.2 38.2 95.5 1 91.0 3 82.0 9 54.9 19 09.9 38 19.7 1 91 01.5 

Hzi  0.0 3.0 9.2 18.9 38.1 95.5 1 91.0 3 82.0 9 54.9 19 09.9 38 19.7 1 91 01.5 

Hz  0.0 1.0 3.1 6.3 12.7 31.9 64.1 1 28.9 3 28.4     6 77.1 14 35.4 1 04 19.0 

Hz  3.0 5.3 13.7 27.7 55.5 1 38.8 2 77.6 5 55.4 13 89.8 27 84.5 55 89.4 2 89 53.2 

 

As the above table shows, despite low values of collimation and inclination errors, with 

a precise compensation system for transverse deflection influence, the influence of these 

factors on the Hz readout for near zenithal directions is significant, and for V<2.5
c
 it 



exceeds 1
g
.  It is worth noting that the combined influence of  instrumental errors on the 

Hz component is, approximately, adversely proportional to the zenithal angle V. 

 

As the Hz component for near zenithal directions is charged with a significant influence 

of instrumental errors, it is not used in many measuring methods, e.g. in the area of 

astronomical geodesy. 

 

2.4. Influence of instrumental errors on the measurement of a vertical angle 

 

Among instrumental errors affecting the measurement of a vertical angle one can name: 

•  index error of a vertical circle, 

•  position shift of a target axis with a focusing change, 

•  influence of a theodolite deflection from plumb, 

•  unstable vertical axis. 

 

Similarly as in the case of  the Hz component, there is no need to analyze the last two 

influences separately. Thus the vertical angle will be affected by index error of a vertical 

circle and deflection from plumb error, but in the case of the vertical error  this 

influence is constant and does not depend on the value of  this angle. The combined, 

average influence of instrumental errors on the vertical angle V is thus expressed by the 

following equation: 
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Where ΔV0 is the influence of a vertical circle index. 

 

2.5. Influence of instrumental errors on accurate location of points 

 

In the case  of  measurements defining the spatial position of observed points, a simple 

accuracy characteristics expressed by the mean error of an Hz component  does not 

provide an answer to the question  whether  accuracy characteristics for a given 

theodolite involving angle measurements meets  accuracy requirements of a performed 

task. To this aim  it would be more appropriate  to analyze the figure formed on the 

surface of a certain conventional sphere of  the centre Q of a theodolite ( the intersection 

of the main axis with the horizontal standing axis of a telescope) by the vacillation band, 

corresponding to the influence of analyzed instrumental errors on measured 

components of a spatial direction. The vacillation band for the horizontal direction will 

be the strip contained between two “meridians” corresponding to the values Hz0-ΔHz 

and Hz0+ΔHz . Its width near point P (Hz0 , V0 ) will amount: 

0VsinHzr2a                                     w3_29y    (11) 

where r is the sphere radius. 

 

The band for the vertical angle will assume the shape of a ring defined by two 

“parallels“ corresponding to the values of Vz0-ΔVz and Vz0 +ΔVz . The band width will 

be expressed by the equation: 

Vr2b                                             w3_29z       (12) 

It will be constant  as the influence of instrumental errors charging the vertical angle 

does nor depend on this circle.  The intersection of  two bands forms an error figure in 



the shape of a curve-sided trapezium (Fig.1), the two sides of which, corresponding to 

Hz0-ΔHz and Hz0+ΔHz, are big circles, whereas the side corresponding to Vz0-ΔVz and  

Vz0+ΔVz   are  small circles. 

 

 
Fig. 1. 

To carry out an appropriate digital analysis, let us assume, additionally, the following 

numerical values : 

- residual index error of  vertical circle error  3
cc

, 

- sphere radius r = 100m. 

 

On the assumptions that that the value ΔV is constant and equals 3.3
cc

, the 

corresponding value set  from the relationship (12) b = 0.993 mm. The combination of 

values obtained from the dependence (11) is represented by the table and the ensuing 

diagram below.  

Table 4. Horizintal dimensio of curve-sided trapezium 

V [g
] 100 50 20 10 5 2 1 0.50 0.20 0.10 0.05 0.01 

a [mm] 0.942 1.175 1.335 1.361 1.367 1.369 1.369 1.369 1.369 1.369 1.370 1.370 
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Fig. 2. 

 

As the above analysis shows, a rapidly growing Hz component in the zenithal area does 

not influence significantly the defining accuracy of a spatial direction represented by 

trapezium error. There is a slight change in the value of the error figure, evenly spread 

throughout the entire range of vertical angles analyzed. This conclusion is also right for 

the value V0 = 0, despite the fact that the Hz component is indeterminate then. The 

error trapezium degenerates then into a circle, the centre of which is the zenithal point 

and  the radius - b/2. 

 



Thus the conducted analysis justifies the conclusion that there is no question of 

accuracy loss for near zenithal directions so in order to define the spatial position of 

points one can use a full range of telescope positions, at which observations are possible. 

Moreover, it should be noted that at the level of instrumental influence, the components 

of spatial directions for various points are mutually dependent values (correlated). It 

stems from the fact that individual directions are affected by the same instrumental 

errors. 

 

3. TEST MEASUREMENTS 

 

The measurements conducted by A.Kaleciński and S.Wykowski (2005) were aimed, 

among others, at verifying the accuracy of the results of the analysis presented above. 

These measurements were carried out with a two-theodolite measuring system using the 

angle intersection method. The system consisted of two digital  theodolites Wild T2002 

and a computer (laptop)  with a piece of software enabling to collect measurement 

results and supervise individual measuring activities. Due to  target limitations of up to 

79
g
 it was impossible to check the proper functioning of the system for the steepest 

targets. As a result of model section measurements, no noticeable accuracy decrease was 

observed on a precise leveling staff placed above the instruments, while measuring the 

length of a section with an increase in the target axes inclination. In all the tests this 

accuracy was very high and oscillated at the 0.04 ÷0.08 mm level. (deviation for the 

standard length).   
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