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ABSTRACT 
 

Quality control generally requires data of higher quality to quantify the error in any 

measured quantity. The following work shows that the Prószyński Reliability Criterion 

(PRC) is fulfilled if the measurement variance is greater than its prediction function 

based on the remaining observations. 

The partial derivatives with respect to the parameters of the residuals' equations are 

taking the role of the observations within the system. Therefore the prediction variance 

can be measured. If the prediction function is bounded then a reliable observational 

system (i.e. each observation has fulfilled the PRC) can be achieved. 

 

1. INTRODUCTION 

 

A versatile, accurate and practical shape approximation imposes both the observational 

system and model approximation to be compliant with the reliability requirements. In 

the previous work (Nowak E., Nowak J., 2006), 3D shapes were modelled and analysed 

focusing on approximating the 3D shape based on polynomial interpolation (simple, 

orthogonal, Legendre’ and Bernstein polynomials), spline interpolation, Bezier’s 

functions, and the NURBS technique. The approximation was made on the basis of n 

evenly-distributed points that allow for model quality control within the measured set. 

It was shown that 322 2 uun  can be used as a reliability criterion for 

approximating 3D shapes based on polynomials and spline. 

 

2. THE RELIABILITY CRITERION IN REGARDS TO THE QUALITY OF THE 

ADJUSTED OBSERVATIONS 

 

The following analysis is limited to the case of the independent observations’ 

adjustment
2

ill diagC . A iiv /  normalisation reduces it to the Least Square 

Method (LSM), which is a Euclidean metrics ( vvTmin , where the standardized residua 

equations lAxV ). Whereas the reliability matrix R is a variance-covariance matrix 



of adjusted residua (referred also as to 
vvC  or vvCov ˆ,ˆ ), and QIR ; where 

TT AAAAllCovQ ˆ,ˆ . 

If the R  matrix (Prószyński W., 1994)  is known, then both the adjustment of the 

observational set lRv̂  and the formulation of the Observation Reliability Criterion 

2/1iiR  (1) are feasible. Taking advantage of the duality characteristic of the Least 

Squares Method (Perelmuter A., Nowak E., Prószyński W., 1994., Nowak E., Nowak, J., 

2005).   , the Reliability Criterion of the parametric subspace is given as: 
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The formula (1) may be interpreted as follows: the Reliability Criterion is fulfilled if the 

adjustment results in the observational variance are at least two times smaller than 

before the adjustment.  

 

3. THE RELIABILITY OF THE AVERAGE OF THE REPEATED OBSERVATIONS 

 

Let us begin with a simple example; several observations of the same measure. Then: 
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and the Reliability Criterion is expressed as follows: 2n     

  

The method of the observation validation based on its repetitions is well-known and not 

complicated but it requires more than two observations for each unknown. Such 

conclusion can be reached by the act of deducting, as follows: 

 We make the first observation ( 1n ) and we are unable to validate it. 

 We make the second observations ( 2n ) of the same measure, then we are able 

to check if their difference is within the given tolerance but in case of intolerable 

difference, we are unable to distinguish the true value. 

 We make the third observations ( 3n ) of the same measure, and then we are 

able to detect the error in any measured quantity by differences’ analysis. 

Thus the triple repetition of each of the observations allows for the observation 

validation regardless any regression modelling.  

 

4. THE RELATIVE RELIABILITY CRITERION OF THE  OBSERVATION 

 

Let us begin with the analysis of the variances of the adjusted observations. Let us 

divide the set of observations into two subsets: the first one consists solely the 

observation being analysed (here denoted as b ), the second subset consists of the all the 

remaining observations. Assuming that the b observation is the last one (the equivalent 

of the nA ), we can obtain 
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The establishment of the variance of the adjusted observation requires the 
1

AAT
matrix. In order to obtain it, we make use of the formula for the inverse of the 

given matrices sum (Rao C. Radhakrishna. 1982) 
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In our case the above formula is expressed as follows: 
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Whereas the wanted variance (Nowak E., 1985)  is formulated as: 
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 where 
TT baabs

12
.             (5) 

The 
2s  parameter, mentioned in formula (5), is the prediction variance of the 

nlf  

function, being determined using all the observations except the last (
nl ), and it shows 

how these observations influence the adjustment of the 
nl .  

Applying (5) to the formula (1) we obtain 
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And finally, the Reliability Criterion can be described by the following inequality 
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Not taking into account the normalisation, our analysis results in the (9) inequality  
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and subsequently                           
22

ns           (10) 

 

Therefore, the Reliability Criterion is fulfilled if the observation variance is greater 

than its prediction function based on the remaining observations. Such prediction is 

used for the (new) observation validation since the new observation has to be less 

accurate from the standard given indirectly by the rest of the observations. By this 

conclusion, the relation with the classical control methods is shown there (Humienny Z., 

2004). 

 

 

 

 

 



Example 1. 

Let take the mean of the observations that differ in accuracy as follows: 2

3

2

2

2

1 . 

Then the Reliability Criterion is given by the following inequality  
2

3

2

2

2

1

4
. 

 

5. THE RELIABILITY OF THE LINEAR APPROXIMATION  

(REGRESSION MODEL) 

 

The linear regression model for the 
ii yx ,  set can be written as: 

 

                                                       baxy                                                                        (11) 

 

The partial derivatives with respect to the parameters of the residuals' equations are 

taking the role of the observations within the system. 

 

                                             ii xA 1, , 12,iA                                                                         (12) 

 

Therefore the linear regression model can be written in vector-matrix notation (as 

regards to the Least Squares Analysis developed by Carl Friedrich Gauss) as:  
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Coordinate system translation to the centre of the observational set ( nxx i / ) results 

in the elements out of the main diagonal set to 0. Thus the prediction variance for the 

new observation of the yx,  point can be formulated as: 

nx

x
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The further the observational set center is, the greater the prediction varaiance is. One 

of its application is the determination of the unpredicted or unexplained variation in the 

response variable sgŷ , where the term g represents the limit of the error. The 

prediction variance leads to the following criterion 
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And finally  22 1
1 ix

n
x                   (14a) 

It means that the new observation cannot be very different from the remaining 

observations (that are regarded as its validation standard). Such conclusion was also 

shown in our prievious work (Nowak E., Nowak J., 2006). 

 

 

 

 



Example 2. 

Let take the line segment 11 x  and its measurements: one for each egde and one in 

the middle. And then we strength the set of the measurements by two additional 

observations at the x  points. In such case, we have: 2u , 5n  and  
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Applying the Reliability Criterion (1) to the observations at the edges requires:
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Therefore 3/21 2x  is the condition for reliable distribution of minimal 

observations’ number ( 12un ). 

 

Considering the more general case of the non-linear approximation, the equivalent 

conclusion can be drawn: the analogical limitation applies for the derivatives existent in 

the residual equations. It is an equivalent of the Lipszyc Condition for the differential 

equations (Demidowicz B.P., 1972). 

 

6. THE RELIABILITY OF THE PERIODIC APPROXIMATION 

 

We analyse the approximation of the 
ii yx ,  set by periodic function given by the 

following formula:  

 

                                                        )sin( bxay                                                              (15) 

 

The residuals equations variables are given by: 

 

                                        bxA ii sin1, ,        bxaA ii cos2,                                       (16) 

 

The condition for the elements out of the main diagonal being set to 0 (as regards to the 

Normal Gauss Equations) can be formulated as follows: 

 0cossin bxbx ii . 

Then, expending the equations, we obtain 

 0sinsincoscossincoscossin bxbxbxbx iiii  

And after the multiplication: 02cos2sin2sin2cos ii xbxb . Thus the X-axis shift 

is defined us 
i
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. And after the necessary 

expending:  
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And finally, considering the fact that 1sin 2 x , we can express the Reliability Criterion 

as: 

 

                                                               1sin 2
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Drawing from specific cases for more general cases, one can state that if the 

observational equation derivatives are limited (bounded) then a reliable observational 

system (i.e. each observation has fulfilled the PRC) can be achieved. 

 

Example 3. 

Let take the approximation of the following periodic function 

iiii xexdxcxbay 2cos2sincossin  

 

Table 1. A  Matrix and the variances of the adjusted observations. 

 x [grad] A b C d e Qii 

1 0 1 1 0 1 0 5/12 

2 30
 

1 2/3  ½ 1/2 2/3  5/12 

3 60 1 1/2 2/3  -1/2 2/3  5/12 

4 90 1 0 1 -1 0 5/12 

5 120 1 -1/2 2/3  -1/2 - 2/3  5/12 

6 150 1 - 2/3  ½ 1/2 - 2/3  5/12 

7 180 1 -1 0 1 0 5/12 

8 210 1 - 2/3  -1/2 1/2 2/3  5/12 

9 240 1 -1/2 - 2/3  -1/2 2/3  5/12 

10 270 1 0 -1 -1 0 5/12 

11 300 1 1/2 - 2/3  -1/2 - 2/3  5/12 

12 330 1 2/3  -1/2 1/2 - 2/3  5/12 

 

Table 2. AAT
 Matrix. 

12 0 0 0 0 

0 6 0 0 0 

0 0 6 0 0 

0 0 0 6 0 

0 0 0 0 6 

 

The example is characterised by the following parameters 12n , 5u . Unlike for the 

polynomial approximations ( 43322 2 uun ), the observations number is only a 

bit greater than double number of unknowns. 

 

 



7. TECHNOLOGICAL REMARKS/CONCLUSIONS  

 

The theoretical work presented above has significant practical consequences. Two 

specific issues are described below. 

A. The assumption that observations are independent may be debatable in some 

cases, e.g. the computation of the average from a series of observations (see 

section 2) by stational adjustment. In order to obtain ‘true’ observational 

independence, one must repeat the entire measurement sequence by starting 

from point identification and instrument centering. 

B. Practical application of the linear approximation (see section 4) involves the 

physical representation of the line segment (and not the whole line). In this case, 

the derivatives (expressed in coordinates) are bounded by the size of the 

measured object. By analogy, the approximation in the closed subspace (e.g. 

based on the polynomial line segment) produces bounded derivatives (similar to 

the periodical approximation). The practical consequence of these findings is that 

the reliable observational system is achievable (e.g. for approximating the shape 

of a building). The unavoidable issue is the cost of measurements that increases 

proportionally to the square of the polynomial degree (Nowak E., Nowak J., 

2006).  (in the case of evenly distributed observations). Moreover, since the 

derivatives are susceptible to measurement errors, the measurements 

characterised by the greatest absolute values of their derivatives have the 

greatest weight with respect to the reliability characteristics of the observational 

system. For polynomial approximations, these maxima are placed at the edges of 

the line segments. Therefore, the most economical method to achieve a reliable 

observational system is to repeat the measurements in vulnerable areas (i.e. 

edges). Similarly for the surface geodetic networks, the most error prone region 

is the network edge. 
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