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1. INTRODUCTION 

 

The Hopfield neural network also called the Hopfield model is a dynamic system 

dissipative in charakter i.e. the vector moves towards the local minimum of an energy 

function. The network is used for matching, classifying and reproducing images, for 

solving optimization problems and a number of other purposes. With the development 

of electronic technologies, interesting characteristics of these networks have been used 

in practice to build integrated circuits physically realizing theoretical models. The 

article suggest using the Hopfield neural network for assessing the stability of points in 

a measurement-control geodetic network. 

 

2. ASSOCIATIVE MEMORY 

 

The Hopfield neural network has been built on the basis of two stage-neurons of the 

McCulloch-Pitts type (Hertz A., Krogh R., Palmer R., 1991). Hopfield suggested an 

effective algorithm of the application of a neural network for creating the so-called 

associative memory. The task of the associative memory is to remember a particular set 

of learning standards so that while presenting an unknown standard x  the system can 

generate the answer in the form of one of the previously remembered standards. In the 

process of learning by a network, which consists in the right choice of weights ijW  of 

particular neurons, attraction areas corresponding to learning standards are created. 

Fig. 1 presents a diagram of the Hopfield recurrent associative memory, which operates 

in the mode of asynchronous status updating i.e. only the status of one neuron is 

updated in one clock cycle. It results from fig. 1 that input signals are simultaneously 

network input signals, i.e. ii xy  . For this reason balance equations of the system can 

be written as (let us omit the polarization value) 
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   Fig. 1. Diagram of the Hopfield associative memory. 

 

Condition (1) is satisfied when weights are chosen according to the Hebb principle 

(Hebb D.O., 1949) 
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One of the most important parameters of the associative memory is its capacity, i. e. 

ability to effectively remember a particular number of images. The notion of the 

capacity of the associative memory is connected to the parameter 
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called crosstalk. If for the 
thl  learning standard the parametr 1)( l

ic , then in spite of a 

certain inconsistence of bits the component 
)(l

ix  is stable. Instability appears when the 

maximum memory capacity is exceeded. Then in the operation of a neuron there is a 

change of status to the opposite to )(l
ix . 

 

value of the parameter c

d
is

tr
ib

u
ti

o
n

 o
f 

p
ro

b
a
b

il
it

y
 P

(c
)

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

-1,2 -1, -,8 -,6 -,4 -,2 0 ,2 ,4 ,6 ,8 1, 1,2

P(c)

P(c)>1

p/n=0,75 p/n=0,30

p/n=0,1

 
      Fig. 2. Distribution of probability of the assumption of the value c. 

 

The distribution of the parameter 
)(l

ic  is a binomial distribution, which for large values 

np  approaches the normal distribution 
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 with the average value zero and the ariance np /σ2   (fig. 2). The value of the 

probability )1(ω )(  l
icP  increases with the increase of the remembered standards p  

and the dimension n  of the vector x  (cf. formula (3)). 
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Fig. 3. Diagram of the dependence of the error maxδδ   

 the number of remembered standards. 

 

 Fig. 3 presents the relation maxp  on the assumption that .ωω max  It can be seen in the 

figure that for the error %10ωmax   (10% of bits in the wrong status) the maximum 

associative memory capacity is about 60% of the number of neurons, from which the 

associative memory has been created. 

 

3. ASSOCIATIVE MEMORY ENERGY FUNCTION 

 

Hopfield identified the energy function of a two-stage network in the form (Hopfield J., 

Tank D., 1986) 
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The process of minimization of the energy function (state function) is closely connected 

to the process of standard recognition. During this process there is a decrease in the 

value of the energy function kk EE 1( ; k – learning step) called the Lapunov function 

(Peretto P., 1992), which on the assumption of a symmetrical weight matrix reaches the 

local minimum at the moment of assigning a standard to one of the attractors. The 

continuation of the minimization process does not then cause a change in the state of 

neurons, which means that the energy of the system does not change. The discussion has 

so for concerned vectors with coordinates corresponding to the position of the vertices 

of an n-dimensional hypercube n]1,1[ . In practice an analogue network is more 

important, in which input signals assume values of a bipolar or unipolar activation 

function ( )α()( xtghxf   or )αexp(1/(1)( xxf  ). If we designate analogue signals as 

iii vxy  , then we will obtain (Gil J., 1995): 
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In a specified state the network equation has the form 
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where iτ  denotes the time constant of the adaptation process. In a specified state 

changes iu  and iv  are zero and the network is balanced. In this case Hopfield defined 

an energy function in the form 
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The energy function during time evolution decreases or remains constant, similarly to 

internal energy in a magnetic system (Kosiński R. A., 2002, 2004). In the process of 

adaptation of the input vector the value of the energy function approaches an energetic 

minimum, in which the network reaches a point attractor. While approaching the point 

attractor the network can reach a local minimum (a parasite attractor), whose 

elimination is a difficult task. 

 

4. NETWORK DYNAMISM IN THE VICINITY OF AN ATTRACTOR  

 

In order to solve a system in the time t  in the vicinity of an attractor we will adopt the 

denotation 
iu  - attractor, iu  - actual point of the system operation (working point). 

Therefore, we will write: 
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where iδ - difference close to zero between the value of the working point of the system 

and the value of the attractor. Thus 
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Next, considering the equation (7) we will have (Osowski S., 1996) 
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Bearing in mind that in a specified state the network equation will have the form 
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the dynamic equation of a linearised network is expressed by the dependence 
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The matrix form of the system of equations (14) is expressed as follows: 
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where: T=diag ]τ,...,τ,τ[ 21 n , G=diag )],(),...,(),([ 21 nufufuf   δ= T
n ]δ,...,δ,δ[ 21 , and 
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It results from the form of the equation (15) that the equation of a linearised system is a 

linear equation. The number of steps n  of the time evolution to the solution 

approaching infinity can be reduced by limiting the precision of changes of the vector δ  

with respect to the precision of the specified coordinates of the displacement vector. 

 

5. NUMERICAL EXAMPLE 
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             Fig. 4. Displacement values.      Fig. 5. Attractor values. 
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     Fig. 6. Number of steps n of the time evolution. 

 

The equation of a linearised system will be used for the assessment of the stability of the 

geodetic matrix point of the measurement-control network, stabilised on a building 

located on expansive soil. The displacement of points have been determined with regard 

to the initial measurement, on the basis of three periodical measurements carried out in 



 

two months’ time intervals. The state of displacements corresponding to a particular 

measurement time has been determined on the basis of the minimization of the sum of 

absolute deviations (Gil J., 1995). The values of attractors and the number of steps of 

time evolutions as indicators for the assessment of the stability of the phenomenon of 

motion of particular measurement points have also been determined for a particular 

measurement time. The results of the numerical simulations have been presented in 

figures 4, 5 and 6. It results from them that point 11 shows a high level of stability at the 

time of the research.  

 

CONCLUSIONS 

 

The problem of associative memory and its energy function can be alternative in the 

approach to the assessment of stability of point of the height matrix on the basis of 

arbitrarily formulated stability functions (Wolski B., 2006). In general, a measurement-

control network set on buildings located on expansive soils is particularly vulnerable to 

load changes, which cause changes in the direction of the trajectory of the movement of 

points. The results of the numerical experiments described in the paper with regard to 

the whole research period confirm the proposition that the displacement of a particular 

point equal to zero does not prove the stability of the phenomenon of the movement of 

points. A typical example is point 9, whose displacement in the time t=5 equalled zero 

with an assigned number of step of time evolution equal to 7. A specified number of 

steps of time evolutions of points of the measurement-control geodetic network, which 

represents general information on the stabilization time of the phenomenon of 

movement of points should be associated with a forecast for displacement on condition 

that the foundation-soil system is stabilized. 
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