Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A subset S ⊆ V(G) is a k-independent set if no two of its vertices are in distance less than k. In this paper we study fc-independent sets and (k, l)-kernels (i.e. k-independent sets being l-dominating simultaneously) in the corona of graphs. We describe an arbitrary k-independent set of the corona and next we determine the Fibonacci number and the generalized Fibonacci number of the corona of special graphs. We give the necessary and sufficient conditions for the existence of (k, l)-kernels in the corona.
Czasopismo
Rocznik
Tom
Strony
127--135
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
autor
- Deprtment of Mathematics Rzeszów University of Technology W. Pola 2, P.O. Box 85 35-959 Rzeszów, Poland, wszumny@prz.rzeszow.pl
Bibliografia
- [1] D.W. Bange, A.E. Barkauskas, P.J. Slater, Efficient dominating sets in graphs, Aplication of Discrete Mathematics, SIAM Philadelphia, PA, (1988) 189-199.
- [2] C. Berge, Principles of combinatorics, Academic Press, New York and London, 1971.
- [3] R. Diestel, Graph Theory, Springer-Verlag, Heidelberg, New-York. Inc., (2005).
- [4] R. Frucht, F. Harary, On the corona of two graphs, Aequationes Mathematicae 4 (1970) 322-324.
- [5] H. Galeana-Sanchez, On the existence of kernels and h-kernels in directed graphs, Discrete Mathematics 110 (1992) 251-255.
- [6] G. Hopkins, W. Staton, Some idenities arising from the Fibonacci numbers of certain graphs, The Fibonacci Quarterly, (1984) 225-228.
- [7] M. Kucharska, On (k,l)-kernels of orientations of special graphs, Ars Combinatoria 60 (2001) 137-147.
- [8] M. Kwaśnik, On (k,l)-kernels in graphs and their products, Doctoral dissertation, Technical University of Wrocław, Wrocław, 1980.
- [9] M. Kwaśnik, I. Włoch, The total number of generalized stable sets and kernels of graphs, Ars Combinatoria, 55 (2000) 139-146.
- [10] H. Prodinger, R.F. Tichy, Fibonacci numbers o f graphs, The Fibonacci Quarterly, 20 (1982) 16-21.
- [11] B.E. Sagan, A notę on independent sets in trees, SIAM J.Alg. Discrete Mathematics, Vol. l, No. l, February, (1988) 105-108.
- [12] M. Startek, I. Włoch, The total number of stable sets in some classes of trees, Folia Scient. Univ. Tech. Res. 24 (2000) 131-135.
- [13] M. Startek, A. Włoch, I. Włoch, Fibonacci numbers of trees, Journal of Mathematics and Applications 28 (2006) 137-145.
- [14] J. Topp, Domination, independence and irredundance in graphs, Dissertationes Mathematicae, Warszawa, 1995.
- [15] A. Włoch, I. Włoch, The total number of maximal k-independent sets in the generalized lexicographic product of graph, Ars Combinatoria, 75 (2005) 163-170.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA7-0031-0010