PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Some inequalities involving differential operators and their applications to certain multivalent functions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main object of the present paper is to investigate several results of certain differential operators which were recently introduced and (or) studied in a series of papers by Chen et et al. [1-3], Irmak et al. [8, 10, 11], Dziok et al. [5, 6] and Liu et al. [14]. In addition, some applications of our results involving certain differential inequalities of multivalently analytic and (or) multivalently raeromorphic functions are given. Our certain results also include some recent results in [5, 6, 9, 11, 12].
Rocznik
Tom
Strony
109--120
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
autor
autor
  • Institute of Mathematics University of Rzeszów ul. Rejtana 16 A, PL-35-310 Rzeszów, Poland
Bibliografia
  • [1] M. P. Chen, H. Irmak and H. M. Srivastava, Some families of multivalently analytic functions with negative coefficients, J. Math. Anal. Appl. 214(4)(1997), 674-690.
  • [2] M. P. Chen, H. Irmak and H. M. Srivastava, Some multivalent functions with negative coefficients defined by using a differential operators, PanAmer. Math. J. 6(2)(1996), 55-64.
  • [3] M. P. Chen, H. Irmak, H. M. Srivastava and C. S. Yu, Some subclasses meromorphically multivalent functions with negative or positive coefficients, PanAmer. Math. J. 7(4)(1997), 53-72.
  • [4] P. L. Duren, Univalent Functions, Grundlehren der Mathematishen Wissenschaften 259, Springer-Yerlag, 1983.
  • [5] J. Dziok and H. Irmak, Certain classes and inequalities and their applications to multivalent functions, Folia Sci. Univ. Tech. Resov. 25(2001), 55-62.
  • [6] J. Dziok and H. Irmak, Certain operators and inegualities and their applications to meromorphically multivalent functions, Demonstratio Math. 36(4)(2003), 839-846.
  • [7] A. W. Goodman, Univalent Functions. Vols. I and II, Polygonal Publishing Company, 1983.
  • [8] H. Irmak, N. E. Cho and S. H. Lee, Some multivalently starlike functions with negative coefficients and their subclasses defined by using a differential operator, Kyungpook Math. J. 37(1)(1997), 43-51.
  • [9] H. Irmak and S. Owa, Certain inegualities for multwalent starlike and meromorphically multivalent starlike functions, Buli. Inst. Math. Acad. Sinica 31(1)(2003), 11-21.
  • [10] H. Irmak and Ö. F. Çetin, Some theorems involving inegualities on p-valent functions, Turkish J. Math. 23(1999), 453-459.
  • [11] H. Irmak, N. E. Cho, Ö. F. Çetin and R. K. Raina, Certain inegualities involving meromorphically multivalent functions, Hacet. Bull. Nat. Sci. Eng. Ser. B 30(2001), 39-43.
  • [12] H. Irmak and R. K. Raina, The starlikeness and convexity of multivalent functions involving certain inequalities, Rev. Math. Comput. 16(2)(2003), 391-398.
  • [13] I. S. Jack, Functions starlike and convex of order ?, J. London Math. Soc. 3(1971), 469-474.
  • [14] J. L. Liu and H. M. Srivastava, A lineer operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl. 259(2001), 566-581.
  • [15] H. M. Srivastava and S. Owa (Editors), Current Topics in Analytic Functions Theory, World Scientific Publ. Comp., 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA7-0031-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.