PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Statistical convergence on composite vector valued sequence space

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we have defined the idea of statistical convergence and statistically Cauchy sequence over the generalized class of composite vector valued sequence space F(Ek, f). The class F(Ek, f) is in-troduced and discussed by Ghosh and Srivastava [7], where F is a normal paranormed sequence space, Ek's are Banach spaces and f is a modulus function. We have established some results of Fridy, Connor and Rath and Tripathy, such as, decomposition of statistically convergent sequences, equivalence of statistical convergence and statistical Cauchy convergence and sequentially completeness of the space of bounded statistically con-vergent sequences of F [E, f].
Rocznik
Tom
Strony
75--90
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
Bibliografia
  • [1] Buck, R. C., Generalized asymptotic density, Amer. Jour. Math, 75 (1953), 335-346.
  • [2] Bilgin, T., The Sequence Space l(p,fv,q,s), Journal of Faculty of Education, 1(1), (1994), 73-82.
  • [3] Connor, J., The statistical and strong p-Cesaro convergence of sequence, Analysis, 8 (1988), 47-63.
  • [4] Fast, H., Sur la convergence statistique, Colloq. Math, 2 (1951), 241-244.
  • [5] Freedman, A. R. and Sember, J. J., Densities and Summability, Pacific Jour. of Math., 85(2) (1981), 293-305.
  • [6] Fridy, J. A., On statitical convergence, Analysis, 5 (1985), 301-313.
  • [7] Ghosh, D. and Srivastava P. D., On some vector valued seąuence spaces defined using a rnodulus function Indian J. Pure Appl. Math, 30(8) (1999), 819-826.
  • [8] Maddox, I. J., Infinite Matrices of Operators, Lecture Notes in Mathematics, Springer-Yerlag Berlin, New york, 1980.
  • [9] Maddox,I. J., Sequence spaces defined by a modulus , Proc. Camb. Phil. Soc. 100, (1986), 161-166.
  • [10] Maddox,I. J., Statistical convergence in a locally convex space, Math. Proc. Camb. Phil. Soc., 104 (1988), 141-145.
  • [11] Özturk, E., Bilgin, T.: Strongly summable seąuence spaces Defined By a Modulus, Indian J. Pure Appl. Math., 25 (6), (2004), 621-625.
  • [12] Rath, D. and Tripathy, B. C., On statistically convergent and statistically Cauchy sequences, Indian Jour. Pure Appl. Math, 25(4) (1994), 381-386.
  • [13] Ruckle, W., FK spaces in which the seąuence of co-ordinate vectors is bounded, Cand. J. Math. 25 (1973), 973-978.
  • [14] Salat, T., On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139-150.
  • [15] Schoenberg, I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.
  • [16] Tripathy, B. C., Proc. Estonian Acad. Sci. Phys. Math, 47(4) (1998), 299-303.
  • [17] Niven, L, Zuckerman, H. S., Montogomery, H. L., An Introduction To The Theory of Numbers, John Wiley & Sons Inc. New York., 1960.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA7-0031-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.