Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we introduce and study two subclasses (Rn,p(α, A, B)) and Sn,p(α, A, B)) of meromorphic p-valent functions of order α (0 ≤ α < p) defined by certain linear operator. We investigate the various important properties and characteristics of these subclasses. Some properties of neighborhoods of functions in these subclasses are investigated. Also we derive many interesting results for the Hadamard products of functions belonging to the class Sn,p(α, A, B).
Czasopismo
Rocznik
Tom
Strony
33--52
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
autor
- Department of Mathematics Faculty of Science Mansoura University Mansoura 35516, Egypt
Bibliografia
- [1] O. Altintas and S. Owa, Neighborhoods of certain analytic functions with negative coefficients, Internat. J. Math. Math. Sci. 19 (1996), 797-800.
- [2] O. Altintas, O. Ozkan and H. M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett. 13 (2000), no. 3, 63-67.
- [3] O. Altintas, O. Ozkan and H. M. Srivastava, Neighborhoods of certain family of multivalent functions with negative coefficients, Comput. Math. Appl. 47 (2004), 1667-1672.
- [4] M. K. Aouf, On a dass of meromorphic multivalent functions with positive coefficients, Math. Japon. 35 (1990), 603-608.
- [5] M. K. Aouf, A generalization of meromorphic multivalent functions with positive coefficients, Math. Japon. 35 (1990), 609-614.
- [6] M. K. Aouf, On a certain class of meromorphic univalent functions with positive coefficients, Rend. Mat. 7(11) (1991), 209-219.
- [7] M. K. Aouf and H. M. Hossen, New criteria for meromorphic p-valent starlike functions, Tsukuba J. Math. 17 (1993), 481-486.
- [8] M. K. Aouf and H. E. Darwish, Certain classes of meromorphic univalent functions with positive coefficients, Nihonkai Math. J. (1993), 181-199.
- [9] M. K. Aouf, H. M. Hossen and H. E. Elattar, A certain class of meromorphic multivalent functions with positive and fixed second coefficients, Punjab Univ. J. Math. 33 (2000), 115-124.
- [10] M.-P. Chen, H. Irmark and H. M. Srivastava, Some families of multivalently analytic functions with negative coefficients, J. Math. Anal. Appl. 214 (1997), 674-690.
- [11] N. E. Cho, On certain class of meromorphic functions with positive coefficients, J. Inst. Math. Comput. Sci. (Math. Ser.) 3 (1990), no. 2, 119-125.
- [12] N. E. Cho, S. H. Lee and S. Owa, A class of meromorphic univalent functions with positive coefficients, Kobe J. Math. 4 (1987), 43-50.
- [13] N. E. Cho and S. Owa, On certain classes of meromorphically p-valent starlike function, In New Developments in Univalent Function Theory, Special Issue of Surikaisekikenkyusho Kokyuroku, (Edited by S. Owa), 821 (1993), 159-165.
- [14] A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 898-901.
- [15] I. S. Jack, Functions starlike and convex functions of order ?, J. London Math. Soc. 2 (1971), no. 3, 469-474.
- [16] S. B. Joshi and M. K. Aouf, Meromorphic multivalent functions with positive and fixed second coefficients, Kyungpook Math. J. 35 (1995), 163-169.
- [17] S. B. Joshi and H. M. Srivastava, A certain family of meromorphically multivalent functions, Comput. Math. Appl. 38 (3-4) (1999), 201-211.
- [18] S. R. Kulkarni, U. H. Naik and H. M. Srivastava, A certain class of meromorphically p-valent quasi-convex functions, PanAmerican Math. J. 8 (1998), no. 1, 57-64.
- [19] J.-L. Liu, Properties of some families of meromorphic p-valent functions, Math. Japon. 52 (2000), no. 3, 425-434.
- [20] J.-L. Liu and H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl. 259 (2000), 566-581.
- [21] J.-L. Liu and H. M. Srivastava, Some convolution conditions for starlikeness and convexity of meromorphically multivalent functions, Appl. Math. Lett. 16 (2003), no. l, 13-16.
- [22] J.-L. Liu and H. M. Srivastava, Subclasses of meromorphically multivalent functions associated with a certain linear operator, Math. Comput. Modelling 39 (2004), 35-44.
- [23] M. L. Mogra, Meromorphic multwalent functions with positive coefficients. I, Math. Japon. 35 (1990), no. l, 1-11.
- [24] M. L. Mogra, Meromorphic multivalent functions with positive coefficients. II, Math. Japon. 35 (1009), no. 6, 1089-1098.
- [25] S. Owa, H. E. Darwish and M. K. Aouf, Meromorphic multivalent functions with positiwe and fixed second coefficients, Math. Japon. 46 (1997), no. 2, 231-236.
- [26] R. K. Raina and H. M. Srivastava, A new class of meromorphically multivalent functions with applications to generalized hypergeometric functions, Math. Comput. Modelling 43 (2006), 350-356.
- [27] St. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), 521-527.
- [28] A. Schild and H. Silverman, Convolution of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 29 (1975), 99-107.
- [29] H. M. Srivastava, H. M. Hossen and M. K. Aouf, A unified presentation of some classes of meromorphically multivalent functions, Comput. Math. Appl. 38 (1999), 63-70.
- [30] B. A. Uralegaddi and M. D. Ganigi, Meromorphic multivalent functions with positive coefficients, Napali Math. Sci. Rep. 11 (1986), no. 2, 95-102.
- [31] B. A. Uralegaddi and C. Somanatha, Certain classes of meromorphic multivalent functions, Tamkang J. Math. 23 (1992), 223-231.
- [32] D.-G. Yang, On new subclasses of meromorphic p-valent functions, J. Math. Res. Exposition 15 (1995), 7-13.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA7-0031-0003