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ABSTRACT 

 

Vessels engaged in coastal navigation must have their position determined with high 

accuracy. This can be ensured only by satellite systems such as GPS and GLONASS. 

The paper presents generalized concepts of geometrical factors of a navigational system. 

Such factors are used in the analysis of the accuracy of various radionavigational 

systems aimed at selecting the best system for a given area.  

The modern process of navigation is described in a four-dimensional space – three 

geometric dimensions and time. For this reason both the description and analysis of 

navigational systems should be performed in the same space. The traditional geometric 

factor of the land-based radionavigational system was generalised to include the factors 

GDOP, PDOP, HDOP, VDOP and TDOP for the needs of the accuracy analysis of  

a GPS system. These terms are related to the so-called geometry of navigational system 

– through mutually related positions of gradients of navigational functions determining 

position lines (hyperplanes). They are connected with non-linear regression through  

a probabilistic relation between the measured navigational parameters. Consequently, 

the concept of geometric factors in the process of navigational parameters estimation 

can be also extended to include a larger number of dimensions appropriate for the state 

vector. 

 

INTRODUCTION 

The modern process of navigation is described in four-dimensional space in terms of the 

physical space – three geometrical dimensions plus time. Consequently, a description 

and analysis of navigational positionig system accuracy should be performed in the 

space of the same dimensions. It is particularly important when navigational 

pseudorange satellite systems are used. These systems, from the point of view of 

measured navigational parameters analysis, have spatial-time structure. The classical 

concepts of navigational geometry in two dimensions need to be extended to at least four 

dimensions. 

Both in theoretical considerations as well as in practice it is necessary to compare two 

navigational systems. From navigational perspective, it is important which system 

makes it possible in a given area to determine a position with greater accuracy. For 

comparison, we make use of accuracy zones of these systems. Within these zones, lines 

of equal accuracy of position are drawn. These lines correspond to constant values of 



distance root mean square errors. The lines of equal accuracies are sets of points on the 

surface of the earth's ellipsoid (or reference plane), satisfying this condition: 

 drms = const,                                    (1) 

where drms - distance root mean square. 

In general, we refer to hyperplanes of equal accuracies as to sets of points in the 

navigational space VN satisfying the above condition. In the case of equally accurate 

measurements of navigational parameters, we can determine the distance root mean 

square error from this relationship: 

 drms  = σDOP,                             (2) 

where: 

σ - mean measuring error,  

DOP - Dilution of Position. 

The geometric factor of the navigational system is a single-parameter (scalar) 

estimation of the system accuracy in the case when measurements are equally accurate. 

The factor accounts for the location of aids to navigation (radio-navigational system 

station, navigational satellites, celestial bodies) relative to the observer, i.e. the so called 

system geometry. The navigational system geometry is defined by the angles at which 

position lines (hyperplanes) intersect and the observer's distance to individual aids to 

navigation. 

The above classical geometric factor of the navigational system, DOP, features the 

accuracy of positioning in the horizontal plane. However, such a concept of the system 

geometry is now insufficient. The development of satellite technology and practical use 

of navigational satellite systems called for a more generalised definition of the 

navigational system geometric factor to include four dimensions. 

 

GEOMETRY OF THE NAVIGATIONAL POSITIONING SYSTEM 

 

Many factors affect the accuracy of position coordinates determination. The most 

important of these factors are as follows: 

– accuracy of the mathematical model chosen for the calculations of position 

coordinates in a given navigational positioning system (calculations on the ellipsoid 

surface, on the sphere, on a reference plane, analytical method, numerical method 

etc.), 

– accuracy of navigational measurements, expressed by means of measuring errors 

covariance matrix R, 

– number of measurements (position lines, areas or hyperplanes), expressed as the 

dimension of measurement space – n, 

– geometry of navigational positioning system (geometry of position lines, areas or 

hyperplanes). 

Let us consider the latter factor, namely the geometry of navigational positioning 

system. It should be mentioned that it also comprises information on the number of 

measurements. Besides, the geometry is related with the accepted model of coordinates 

calculations. In a general case, we can accept the following model for the calculation of  

 

 

 

 



coordinates [2]: 

 

 z = Gx,                                 (3) 

where: 

 z – n-dimensional vector of measurements, 

 x – m-dimensional state vector (of position coordinates), 

G – (n x m)-dimensional matrix functionally combining the position coordinates with 

navigational measurements. 

The matrix G is usually the Jacobian matrix of navigational vector function f (non-

linear). In the geometrical interpretation, the matrix rows are the gradients of 

navigational lines (areas, hyperplanes). Its general form is as follows: 
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In the deterministic case, i.e. when n = m, we can obtain the solution of equation (3) by 

the Newton's method of solving non-linear equations [2], [8]. When we have an excessive 

number of measurements, the solution will be obtained by the least squares method. In 

both cases, we evaluate the accuracy by position covariance matrix [2], [3], [4], [10]: 
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 (5) 

in the case of homogeneous and equally accurate navigational measurements, 
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 (6) 

in any case (also in the case of correlated measurements). 

As it can be seen in the equations above, the matrix G plays a very important part in the 

accuracy assessment of position co-ordinates. The geometry of the navigational 

positioning system can be expressed in quantitative terms by defining the system 

geometry matrix Γ in the form of the following equation [2]: 

= G
T
G.  (7) 

This matrix, being Gram matrix of estimation space base (columns of the matrix G), is 

connected with a natural generalisation of the classical geometric factor of the 

navigational positioning system. The matrix is also related with Fisher's information 

matrix [2]. In addition, as we can see from the relationship (5) it is connected with the 

covariance matrix of position coordinates since 

 

 P = 
2
 

 -1
.                                                          (5a) 

 

 



 

In the general case the matrix  has this form: 
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In special cases, e.g. for navigational satellite systems GPS and GLONASS we obtain 
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where: 

c – velocity of light, 

d – measured pseudorange, 

h – geodetic height (called by some authors by ellipsoidal height), 

– latitude, 

– longitude. 

 

For the land – based hyperbolic radionavigational system the geometry matrix will have 

this form: 
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where: 

A i j – average azimuth between the i-th and j-th station, 

i j – base angle between the i-th and j-th station. 

 

 

 



GEOMETRIC FACTORS OF THE NAVIGATIONAL POSITIONING SYSTEM 

 

The generalisation of the geometric factors of navigational positioning system appeared 

along with the needs of spatial accuracy interpretation of position coordinates. At first, 

it referred to position determination by LORAN-C in aviation, then the concept was 

extended to cover GPS and other satellite systems. Nowadays geometric factors are 

defined for various coordinate systems and for various systems of navigation. 

The most common geometric factors of the navigational position system are as follows: 

– GDOP – Geometric Dilution of Precision; it refers to the accuracy in a four-

dimensional space (φ, λ, H, Δt); 

– PDOP – Position Dilution of Precision; it refers to the accuracy in a three-

dimensional space (φ, λ, H); 

– HDOP – Horizontal Dilution of Precision; it refres to the accuracy in a two-

dimensional space (φ, λ); this factor corresponds to the classical factor of the 

navigational system geometry; 

– VDOP – Vertical Dilution of Precision; it refers to the accuracy in a one-

dimensional space (H); 

– TDOP – Time Dilution of Precision; it refers to the accuracy in a one-dimensional 

space (Δt). 

Other factors were also introduced. These characterise the accuracy along a meridian 

and a parallel: 

– NDOP – North Dilution of Precision; 

– EDOP – East Dilution of Precision. 

Both factors started to be used after the DGPS system was introduced. They are 

equivalent to VDOP and TDOP for the geographical coordinates. The above factors are 

computed using the system geometry matrix. Let us denote its elements with γij, and the 

elements of the inverse matrix with γ’ij. With this notation, we can compute particular 

values of DOP from these formulas: 

 44332211 ''''tr GDOP  , (11) 

 332211 '''PDOP  ,  (12) 

 2211 ''HDOP  ,  (13) 

 33'VDOP  ,  (14) 

 44'TDOP  ,  (15) 

 11'NDOP  ,   (16) 

 22'EDOP .   (17) 

Due to a complex form of the matrix determinant (9), for pseudorange navigational 

satellite systems the factors (11) – (17) do not have a simple geometric interpretation, 

whereas in the case of the hyperbolic radionavigational system we obtain 

 HDOP=0,5cosec [cosec
2
(0,5 cosec

2
(0,5



where   - the angle of intersection of the position lines. 

There are extensions of these factors covering the cartesian coordinate system (X, Y), 

which convert the respective geographical (ellipsoid) coordinates. This is used in 

hydrographic survey with the use of plotting boards (in UTM mapping). These factors, 

however, XDOP and YDOP, do not change the essence of the matter; all that is needed 

is the conversion of the coordinates. 

Another generalisation consists in the computation of geometric factors along the track 

and across the track. These factors are denoted, respectively, ADOP (along-track) and 

XDOP (cross-track). The latter, however, has a notation that may be confused with  

a factor used in the UTM mapping. 

The notion of geometric factor can also be applied to dead reckoning navigation. In this 

case the following relationship will be equivalent to the equation (3) 

 v = Ax,                                    (19) 

where: 

 v – velocity vector, 

A – transition matrix. 

With this notation, the geometric factor of dead reckoning navigation is written as: 

  AA
Ttr DOPDR .                                   (20) 

For frequent cases when 

                                                            IA
t

1
,                     I – unit matrix,                   (21) 

formula (20) will have this form 

 2DOPDR t ,                (20a) 

which obviously means that the accuracy of reckoned position decreases in proportion 

to time. 

P.J.G. Teunissen [11], [12], in turn, has proposed a differently defined factor Ambiguity 

Dilution of Precision (ADOP): 

 adetADOP Q ,   (22) 

where Qa – ambiguity covariance matrix. Although different, this definition of a system 

geometry factor is equivalent in view of optimization. As it was shown in [2], the 

optimization, i.e. the minimization of the geometric factor can be changed into the 

minimization of the confidence area (area of surface or volume), which, in turn, 

corresponds to the minimization of covariance matrix P determinant or, respectively, 

maximization of the system geometry matrix Γ determinant. 

 

CONCLUSION 

 

The concept of the geometry factor of the navigational positioning system is very useful 

in the accuracy analysis of navigational systems [2], [4] – particularly in the designing of 

aids to navigation, assessment of their integrity [9] and the ambiguity of phase 

measurements [11], [12]. More applications can be pointed out, such as the comparison 

of accuracy of various navigational systems, optimization of the choice of land-based 



radio-navigational system chain, or the already implemented optimization of satellite 

configuration etc. One should bear in mind that this factor contains "pure" geometry, 

so it does not take into account the accuracy of measurement in the case when 

measurements are not equally accurate and/or are correlated. In these cases a full 

analysis should be performed with the use of the covariance matrix of position 

coordinates described by the formula (6) and appropriate areas of confidence – ellipses 

or ellipsoids of errors [2]. 

In a general case a similar analysis can be applied to any problem described by  

a formula analogous to the relation (3), including the assessment of estimators of 

generalised state vector in navigation, when the matrix G is obtained from regression 

etc. However, in these cases the geometric interpretation will not be connected with 

geometry in terms of geographic coordinates. 

 

REFERENCES 

 

1. Banachowicz A., “Generalizing the Coefficient of the Geometric Navigational 

System”, Journal of Research AMW No 2, 1989. pp. 5-17 (in Polish). 

2. Banachowicz A., “Geometry of Linear Model of Parametric Navigation”, Journal of 

Research AMW No 109A, Gdynia, 1991 (in Polish). 

3. Banachowicz A., “Application of Covariance Matrix for Calculating Elements of 

Ellipse and Elippsoid of Errors”, Journal of Research AMW No 2, Gdynia, 1991. 

pp. 17-24 (in Polish). 

4. Banachowicz A., “Relationships Between the Matrix of Parametric Navigation 

Geometry and the Fisher's Information Matrix”, Geodezja i Kartografia nr 1, 1993. 

pp. 3-11 (in Polish). 

5. Banachowicz A., “Methods of Optimization of Position Hypersurface 

Configurations”, Journal of Research AMW No 2, Gdynia, 1993. pp. 5-15 (in 

Polish). 

6. Banachowicz A., “The Emburdening of the Position Coordinates Evaluations for 

the Parametrical Navigation Linear Model in Case of Using a Minimum Number of 

Measurements”, Journal of Research AMW No 4, Gdynia, 1993. pp. 5-17 (in 

Polish). 

7. Banachowicz A., “The Effect of Matrix Elements of System Geometry on the 

Accuracy of the Hyperbolic Navigational System Position Coordinates”, Annual of 

Navigation. No 4, 2002. pp.13-19. 

8. Demidovich B.P., Maron I.A., “Computational Mathematics” Mir Publishers, 

Moscow 1987. 

9. Kovach K., Conley R., “SATZAP: A Novel Approach to GPS Integrity”, 

Navigation: Journal of The Institute of Navigation, Vol. 38, No 2, Summer 1991. 

10. Mertikas S., Wells D., “Treatment of Navigational Accuracies: Proposals for the 

Future”, Navigation: Journal of The Institute of Navigation. Vol. 32, No 1, Spring 

1985. 

11. Teunissen P.J.G., de Jonge C.D., Tiberius C.C.J.M., “The Volume of the GPS 

Ambiguity Search Space and its Relevance for Integer Ambiguity Resolution”, 

Proceedings ION GPS’96, Kansas City, USA, 17-20 September 1996. pp. 889-898. 

12. Teunissen P.J.G., Odijk D., de Jonge C.D., “Ambiguity Dilution of Precision: An 

Additional Tool for GPS Quality Control”, Proceedings The Eleventh Biennial 

International Symposium of The Hydrographic Society, Special Publication No 39, 

University of Plymouth UK, 5-7 January 1999. pp. 19-1 – 19-10. 


