PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Fibonacci numbers of trees

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In [6] it was presented a graph-representation of the Fibonacci numbers Fn and Lucas numbers Ln. It is interesting to know that they are the totał numbers of independent sets of undirected graphs Pn and Cn, respectively. More general concept of the number of all k-independent sets of graphs Pn and Cn was discussed in [5]. In [6], [7] it was bounded the number of all independent sets of a tree Tn. In this paper we propose the method which estimate the number Fk(Tn) of all k-independent sets of Tn. We also describe graphs G for which the numbers Fk(G) are the generalizations of the Fibonacci numbers.
Rocznik
Tom
Strony
137--145
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
autor
autor
  • Department of Mathematics Rzeszów University of Technology ul. W. Pola 2, 35-359 Rzeszów, Poland
Bibliografia
  • [1] C. Berge, Principles of combinatorics, Academic Press new York and London 1971.
  • [2] G. H. Fricke, S. T. Hedetniemi, M. A. Honning, Distance. independent domination of graphs, Ars Combinatoria 41(1995), 34-44.
  • [3] F. Harrary, Graph Theory, Addison Wesley, Reading, Mass. 1969.
  • [4] G. Hopkins, W. Staton, Some idenities arising from The Fibonacci numbers of certains graphs, The Fibonacci Quarterly (1984), 225-228.
  • [5] M. Kwaśnik, I. Włoch, The total number of generalized stable sets and kernels of graphs, Ars Combinatoria, 55(2000), 139-146.
  • [6] H. Prodinger, R. F. Tichy, Fibonacci numbers of graphs, The Fibonacci Quarterly 20 (1982) 16-21.
  • [7] B. E. Sagan, A note on independent sets in a tree, SIAM J. Alg. Discrete Math. Vol 1, No 1, February (1988), 105-108.
  • [8] M. Startek, I. Włoch, The number of all stable sets in some classes of graphs, Folia Scient. Univ. Tech. Res. 175(23) (1999), 117-123.
  • [9] M. Startek, I, Włoch, The total number of stable sets in some classes of trees, Folia Scient. Univ. Tech. Res. 181(24) (2000), 131-135.
  • [10] H. S. Wilf, The number of maximal independent sets in a tree, SIAM J.Alg. Discrcte Math. Vol 7, No 1, January (1986), 125-130.
  • [11] A. Włoch, I. Włoch, On (k,l)-kernels in generatized products of graphs, Discrete Math. 164(1996), 295-301.
  • [12] I. Włoch, Generalized Fibonacci polynomial of graph, Ars Combinatoria 68 (2003), 49-55.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA7-0007-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.