PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On two approaches to asymptotic analysis of subsonic rupture propagation

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two approaches to the asymptotic analysis of a surface wave arising under shear rupture propagation are compared. They differ in Green's functions used to derive asymptotic integral equations. One of them provides a finite stress at the rupture front while the displacement discontinuity at infinity behind the front tends to infinity; the other, quite oppositely, leads to an infinite stress at the front while the displacement discontinuity at infinity is finite. Detailed analysis of the equations of the second approach shows its advantages: the possibility of using important results of fracture mechanics and simplification of the eigenvalue problem.
Rocznik
Tom
Strony
93--100
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
  • Institute for Problems of Mechanical Engineering 61 Bol'shoi pr. V.O., Saint-Petersburg 199178, Russia Department of Mathematics Rzeszów University of Technology ul. W. Pola 2, 35-359 Rzeszów, Poland, linkoval@prz.rzeszow.pl
Bibliografia
  • [1] D, Andrews, Rupture velocity of plan--strain shear cracks, J. Geophys. Research 81 (1976), 5679-5687.
  • [2] B. Burridge, G. Conn, L. Freund, The stability of a rapid mode II shear crack with finite cohesive traction, J. Geophys. Research 85 (1979), 2210-2222.
  • [3] L. Galin, Contact Problems of Elasticity Theory, Gostehizdat, Moscow, 1953. (In Russian).
  • [4] Stress Intensity Factors Handbook 1, 2, Y. Murakami (ed.), Pergamon Press, Oxford, New York, 1990.
  • [5] Y. Ida, Cohesive force. across the tip of a longitudinal shear crack and Griffith's specific surface energy, J. Geophys. Research 77 (1972), 3796-3805.
  • [6] A. Linkov, On the determination of the abutment pressure and evaluation of stability of seam edges acconting for post-failure deformations, Soviet Mining Science 14 (1978), 3-7.
  • [7] A. Linkov, On the size of a fracture process zone and on the velocity of displacement discontinuity propagation, Applied Mathematics and Mechanics 69 (2005), 155-160.
  • [8] A. Linkov, M. Tleujanov, On evaluation of local zones of irreversible deformations at a crack tip, Proc. Kirgizian Academy of Sciences 1 (1990), 47-51. (In Russian).
  • [9] N. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen, 1975.
  • [10] I. Petukhov, A. Linkov, The theory of post-failure deformations and the problem of stability iii rock mechanics, Int. J. Rock Mech. Mining Sci. & Geomech. Abstr. 16 (1979), 57-76.
  • [11] J. Rice, Mathematical analysis in the mechanics of fracture, in: Fracture II, H. Liebowitz (ed.), Academic Press, New York, London, 1968, 191-311.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA7-0007-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.