Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Construction of surfaces filing smoothly polygonal holes
Języki publikacji
Abstrakty
Możliwość projektowania powierzchni gładkich o skomplikowanej topologii ma zasadnicze znaczenie dla przydatności systemów CAD do wykonywania praktycznych projektów. Proste sposoby łączenia płatów B-sklejanych, zapewniające ciągłość pochodnych na połączeniach krzywych stałego parametru, umożliwiają konstruowanie powierzchni gładkich z wielokątnymi otworami. Tematem tej pracy są konstrukcje powierzchni wypełniających takie otwory. Konstrukcje takie mają na celu zapewnienie ciągłości geometrycznej odpowiedniego rzędu oraz spełnienie pewnych kryteriów estetycznych przez powierzchnie wypełniające; ponieważ średnice otworów do wypełnienia na ogół są małe, zwykle należy dążyć do tego, aby otwór po wypełnieniu był niedostrzegalny. Praca przedstawia podstawy teoretyczne konstrukcji gładkich powierzchni złożonych z płatów parametrycznych, przegląd konstrukcji znanych z literatury oraz proponowane przez autora nowe konstrukcje. Konstrukcje te umożliwiają wypełnianie otworów w powierzchniach zbudowanych z bikubicznych płatów B-sklejanych (o ciągłej krzywiźnie), z zachowaniem ciągłości płaszczyzny stycznej i ciągłości krzywizny. Skonstruowana powierzchnia wypełniająca składa się z tensorowych płatów Beziera i jest otrzymana jako wynik optymalizacji ze względu na pewne kryterium estetyczne, które w wielu przypadkach zapewnia zadowalający efekt końcowy. Dodatkowo istnieje możliwość nakładania tzw. więzów, czyli warunków interpolacyjnych, dzięki którym użytkownik systemu ma możliwość wprowadzania poprawek związanych ze specyfiką projektu. Implementacje tych konstrukcji (w postaci procedur w C) są dołączone na płycie CD. Przedstawiona w pracy teoria, której podstawowym pojęciem jest przestrzeń klasy Gn, dotyczy podstaw konstruowania takich przestrzeni (m.in. równań ciągłości geometrycznej i warunków zgodności). Teoria obejmuje także interpretację geometryczną rozważanych kryteriów optymalizacji oraz badanie istnienia i jednoznaczności rozwiązań zadań optymalizacji. Ponadto badane są warunki niezależności więzów interpolacyjnych we wspólnym narożniku wielu płatów. Teoria ta może znaleźć zastosowanie także w innych konstrukcjach powierzchni gładkich.
The possibility of designing smooth surfaces with a complicated topology is essential for the usefulness of CAD systems for practical purposes. The simple methods of joining B-spline patches, ensuring the continuity of derivatives of their constant parameter curves at the junction points, make it possible to obtain smooth surfaces with polygonal holes. This study is devoted to constructions of surfaces filling these holes. Such constructions have to ensure that the filling surfaces have the geometric continuity of the appropriate order and satisfy some aesthetic criteria; as the diameters of the holes are often small, it is usually desirable to fill the holes so as to make them invisible. This study contains theoretical foundations for constructions of smooth surfaces consisting of parametric patches, a survey of constructions known from existing publications, and new constructions, developed by the author. These constructions make it possible to filI holes in surfaces made of bicubic B-spline patches (with continuous curvature), with preserving the tangent pIane continuity and curvature continuity. A filling surface being result of the construction consists of tensor product Bezier patches and it is obtained by optimisation with respect to some aesthetic criterion, which in many cases results in a satisfactory final effect. In addition there is a possibility of imposing constraints, being interpolation conditions, which allow the user of a CAD system to make corrections specific for the project. The implementations of those constructions (C language procedures) are available on the enclosed disc. The theory described in this study, whose central notion is the space of class Gn, covers the background for constructing such spaces (geometric continuity equations, compatibility conditions etc.). The theory includes also the geometric interpretation of the optimisation criteria used in the construction and the analysis of the existence and uniqueness of solutions of the optimisation problems. There is also an analysis of independence of the interpolation conditions (constraints), which may be imposed at a common corner of patches. This theory may find its applications also in other constructions of smooth surfaces.
Rocznik
Tom
Strony
3--197
Opis fizyczny
Bibliogr. 98 poz., wykr., rys., tab.
Twórcy
autor
- Instytut Matematyki Stosowanej i Mechaniki Uniwersytetu Warszawskiego
Bibliografia
- [1] Ahlberg J., Nilson E., Walsh J.: The Theory of Splines and their Applications. Academic Press, 1967.
- [2] Barnhill R.E., Brown J.H., Klucewicz I.M.: A New Twist in Computer Aided Geometrie Design. Computer Graphics and Image Processing, 1978, 8, s. 78-91.
- [3] Barsky B.Z., Beatty C.: Local control of of bias and tension in beta-splines. ACM Transactions on Graphics, 1983, 2(2), s. 109-134.
- [4] Beier K.-P, Chen Y.: Highlight-line algorithm for realtime surface-quality assessment. Computer-Aided Design, 1994, 26, s. 269-277.
- [5] Birkhoff G.: Aesthetic measure. Harvard University Press, 1933.
- [6] Bloor M.I.G, Wilson M.J.: Generating blend surfaces using partial differential equations. Computer-Aided Design, 1989, 21(3), s. 165-171.
- [7] Boehm W.: Generating the Bézier points of triangular splines. In: Barnhill R.E., Boehm W.: Surfaces in Computer Aided Geometric Design, s. 77-91, Elsevier, 1983.
- [8] de Boor C.: A practical guide to splines. Springer, New York 1978.
- [9] de Boor C.: Cutting corners always works. Computer Aided Geometric Design, 1987, 4, s. 125-131.
- [10] do Carmo M.P: Differential Geometry of Curves and Surfaces. Prentice-Hall, 1976.
- [11] Catmull E., Clark J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design, 1978, 10(6), s. 350-355.
- [12] Chiyokura H., Kimura F.: A new Surface Interpolation Method for Irregular Curve Models. Computer Graphics Forum, 1984, 3, s. 209-218.
- [13] Cohen E., Lyche T., Riesenfeld R.F.: Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics. Computer Graphics and Image Processing, 1980, 14, s. 87-111.
- [14] Coons S.: Surfaces for computer aided design. Technical Report MIT. AD 663 504, National Technical Information service, Springfield VA 22161, 1964.
- [15] Dekanski C., Bloor M.I.G., Wilson M.J.: The Generation of an Aerodynamical Propeller Using Partial Differential Equations. In: Laurent P.-J., Le Mehaute A., Schumaker L.L. (eds.): Curves and Surfaces, Academic Press, 1991, s. 139-142.
- [16] Clarenz U., Diewald U., Dziuk G., Rumpf M., Rusu R.: A finite element method for surface restoration with smooth boundary conditions. Computer Aided Geometric Design, 2004, 21, s. 427-445.
- [17] Cohen E., Schumaker L.L.: Rates of convergence of control polygons. Computer Aided Geometric Design, 1985, 2, s. 229-235.
- [18] Constantine G.M., Savits T.H.: A multivariate Faa di Bruno formula with applications. Transactions of the American Mathematical Society, Vol. 348, Number 2, 1996.
- [19] Degen W.L.F.: Explicit continuity conditions for adjacent Bézier surface patches. Computer Aided Geometric Design, 1990, 7, s. 181-189.
- [20] DeRose T.D.: Necessary and sufficient conditions for tangent plane continuity of Bézier surfaces. Computer Aided Geometric Design, 1990, 7, s. 165-180.
- [21] Doo D.W.H, Sabin M.A.: Behaviour of recursive division surfaces near extraordinary points. Computer-Aided Design, 1978, 10(6), s. 356-360.
- [22] Dryja M., Jankowska J., Jankowski M.: Przegląd metod i algorytmów numerycznych, cz. 1 i 2. WNT, Warszawa 1982.
- [23] Du W.-H., Schmitt F.J.M.: On the G1 continuity of piecewise Bézier surfaces: a review with new results. Computer-Aided Design, 1990, 22(9), s. 556-573.
- [24] Dyn N., Levin D., Gregory J.: A 4-point interpolatory subdivision scheme for curve design. Computer Aided Geometric Design, 1987, 4, s. 257-268.
- [25] Evans L.C.: Równania różniczkowe cząstkowe. PWN, Warszawa, 2002.
- [26] Faa di Bruno F.: Note sur une nouvelle formule du calcul differentiel. Quart. J. Math, 1855, 1, 359-360.
- [27] Farin G.: Curves and surfaces for Computer Aided Geometric Design. Academic Press, 1993.
- [28] Farin G., Hansford D.: Discrete Coons patches. Computer Aided Geometric Design, 1999, 16, s.691-700.
- [29] Farin G., Hoschek J., Kim M-S. (eds): Handbook of Computer Aided Geometric Design. Elsevier, 2002.
- [30] Fletcher R.: Practical Methods of Optimization. Wiley, 2006.
- [31] Foley J.D., van Dam A., Feiner S.K., Hughes J.F., Phillips R.L.: Wprowadzenie do grafiki komputerowej. WNT, Warszawa 1995.
- [32] Friedman A.: Partial differential equations. Holt, Rinehart and Winston, Inc. 1969.
- [33] Glassner A.S. (ed.): An introduction to ray tracing. Academic Press, London 1989.
- [34] Gregory J.: Smooth Interpolation without Twist Constraints. In: Barnhill R.E. and Riesenfeld R. (eds): Computer Aided Geometric Design, Academic Press, New York 1974, s. 71-87.
- [35] Gregory J.: C1 rectangular and non-rectangular surface patches. In: Barnhill R.E., Boehm W. (eds): Surfaces in CAGD, North-Holland, 1983, s. 25-33.
- [36] Gregory J., Hahn J.: Geometric continuity and convex combination patches. Computer Aided Geometric Design, 1987, 4, s. 79-89.
- [37] Gregory J., Hahn J.: A C2 polygonal surface patch. Computer Aided Geometric Design, 1989, 6, s. 69-75.
- [38] Gregory J., Zhou J.: Filling polygonal holes with bicubic patches. Computer Aided Geometric Design, 1994, 11, s. 391-410.
- [39] Greiner G.: Surface construction based on variational principles. In: Laurent P.J., Le Méhauté A., Schumaker L.L.: Wavelets, Images and Surface Fitting, s. 277-286, A.K. Peters, 1994.
- [40] Grisvard P.: Elliptic problems in nonsmooth domains. Pitman Publishing, 1985.
- [41] Guskov L: Multivariate subdivision schemes and divided differences. Program for Applied and Computational Mathematics, Princeton University NJ08544, 1998. http://www.cs.caltech.edu/~ivguskov
- [42] Hahn J.: Filling Polygonal Holes with Rectangular Patches. In: Theory and Practice of Geometric Modeling (Blaubeueren, 1988), Springer, s. 81-91.
- [43] Hahn J.: Geometric continuous patch complexes. Computer Aided Geometric Design, 1989, 6, s. 55-67.
- [44] Hermann T., Lukacs G.: A new insight into the Gn continuity of polynomial surfaces. Computer Aided Geometric Design, 1996, 13, s. 697-707.
- [45] Hermann T., Lukacs G., Wolter F.-E.: Geometrical criteria on the higher order smoothness of composite surfaces. Computer Aided Geometric Design, 1999, 19, s. 907-911.
- [46] Hosaka M.: Modeling of Curves and Surfaces in CAD/CAM. Springer, 1992.
- [47] Jost J.: Riemannian Geometry and Geometric Analysis. Springer, 2002.
- [48] Jüttler B., Oberender M., Sinwel A.: On the existence of biharmonic tensor-product Bézier surface patches. Computer Aided Geometric Design, 2006, 23, s. 612-615.
- [49] Kahmann J.: Continuity of curvature between adjacent Bézier patches. In Barnhill R.E., Boehm W.: Surfaces in Computer Aided Geometric Design, North Holland, 1983.
- [50] Kiełbasiński A., Schwetlick H.: Numeryczna algebra liniowa. WNT, Warszawa 1992.
- [51] Kincaid D., Cheney W.: Analiza numeryczna. WNT, Warszawa, 2006.
- [52] Kaufmann E., Klass R.: Smoothing surfaces using reflection lines for families of splines. Computer-Aided Design, 1988, s. 312-316.
- [53] Kiciak P: Constructions of G1 continuous joins of rational Bézier patches. Computer Aided Geometric Design, 1995, 12, s. 283-303.
- [54] Kiciak P: Conditions for geometric continuity between polynomial and rational surface patches. Computer Aided Geometric Design, 1996, 13, s. 709-741.
- [55] Kiciak R: Trigonometric splines and geometrie continuity of surfaces. WSCG'99 Conference proceedings, 1999, s. 502-509.
- [56] Kiciak R: Podstawy modelowania krzywych i powierzchni. Zastosowania w grafice komputerowej. WNT, Warszawa, 2000.
- [57] Kiciak R: Podstawy modelowania krzywych i powierzchni. Zastosowania w grafice komputerowej, wydanie drugie, zmienione i rozszerzone. WNT, Warszawa, 2005.
- [58] Klass R.: Correction of local surface irregularities using reflection lines. Computer-Aided Design, 1980, s. 73-76.
- [59] Klingenberg W.: A Course in Differential Geometry. Springer, 1978.
- [60] Knuth D.: TEX Przewodnik użytkownika. WNT, Warszawa, 2005.
- [61] Kufner A., John O., Fučik S.: Function Spaces. Academia, Praga 1977.
- [62] Lane J.M., Riesenfeld R.F.: A theoretical development for the computer generation and display of piecewise polynomial surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, 2(1), s. 35-46.
- [63] Loop C.: Smooth subdivision surfaces based on triangles. Master's Thesis, University of Utah, Dept. of Mathematics, 1987.
- [64] Loop C., DeRose T.: A multisided generalization of Bézier surfaces. ACM Transactions on Graphics, 1989, 8(3), s. 204-234.
- [65] Loop C., DeRose T.: Generalized B-spline Surfaces of Arbitrary Topology. Computer Graphics, 1990, 24(4), s. 347-356.
- [66] Miura K.T., Wang K.-K.: C2 Gregory patch. EUROGRAPHICS'91, s. 481-492.
- [67] Monterde J.: Beziér surfaces of minimal area. The Dirichlet approach. Computer Aided Geometric Design, 2004, 21, s. 117-136.
- [68] Monterde J., Ugail H.: On harmonic and biharmonic Bézier surfaces. Computer Aided Geometric Design, 2004, 21, s. 697-715.
- [69] Monterde J., Ugail H.: A general 4th-order PDE method to generate Bézier surfaces from the boundary. Computer Aided Geometric Design, 2006, 23, s. 208-225.
- [70] Mortenson M.E.: Geometric modeling. Wiley and Sons, 1997.
- [71] Oprea J.: Geometria różniczkowa i jej zastosowania. PWN, 2002.
- [72] Ortega J.M., Rheinboldt W.C.: Iterative solution of nonlinear equations in several variables. Academic Press, 1970.
- [73] Palczewski A. Równania różniczkowe zwyczajne. WNT, Warszawa, 1999.
- [74] Peters J.: Smooth Interpolation of a Mesh of Curves. Constructive Approximation, 1991, (7), s. 221-246.
- [75] Peters J.: Joining smooth patches around a vertex to form a Ck surface. Computer Aided Geometric Design, 1992, 9, s. 387-411.
- [76] Peters J.: Smooth free-form surfaces over irregular meshes generalizing quadratic splines. Computer Aided Geometric Design, 1993, 10, s. 347-361.
- [77] Peters J.: Curvature continuous spline surfaces over irregular meshes. Computer Aided Geometric Design, 1996, 13, s. 101-131.
- [78] Peters J.: C2 free-form surfaces of degree (3, 5). Computer Aided Geometric Design, 2002, 19, s. 113-126.
- [79] Prautzsch H.: Smoothness of subdivision surfaces at extraordinary points. Advances in Computational Mathematics, 1998 (9), s. 377-389.
- [80] Prautzsch H., Boehm W., Paluszny M.: Bézier and B-Spline Techniques. Springer 2002.
- [81] Putz B.: On curvature analysis of free-form surfaces. Second International CAD/CAM Conference CAMP'92, Budapest 1992, s. 126-133.
- [82] Putz B.: On normal curvature discontinuity between tangent plane continuous patches. Computer Aided Geometric Design, 1996, 13, s. 95-99.
- [83] Putz B.: A note about: On normal curvature discontinuity between tangent plane continuous patches. Computer Aided Geometric Design, 1997, 14, s. 1-3.
- [84] Putz B.: Metody oceny gładkości powierzchni krzywoliniowych do zastosowań CAD/CAM. Prace Naukowe Politechniki Warszawskiej, Mechanika, z. 195, 2002.
- [85] Putz B., Kiciak P.: On curvature continuity conditions for parametric surfaces. In: Advances in Computer-Aided Design, CADEX'96 (International Conference and Exhibition on Computer Aided Geometric Design), Linz, 9-12.09.1996, IEEE Computer Society Press, s. 79-85.
- [86] Reif U.: A unified approach to subdivision algorithms near extraordinary vertices. Computer Aided Geometric Design, 1995, 12, s. 153-174.
- [87] Sabin M.: Subdivision Surfaces, In: Farin G., Hoschek J., Kim M-S. (eds): Handbook of Computer Aided Geometric Design. Elsevier, 2002, s. 309-325.
- [88] Sarraga R.: Recent methods for surface shape optimization. Computer Aided Geometric Design, 1998, 15, s. 417-436.
- [89] Schneider R., Kobbelt L.: Geometric fairing of irregular meshes for free-form surface design. Computer Aided Geometric Design, 2001, 18, s. 359-379.
- [90] Spivak M.: Analiza na rozmaitościach. PWN, Warszawa, 2005.
- [91] Theisel H.: Geometrie conditions for G3 continuity of surfaces. Computer Aided Geometric Design, 1997, 14, s. 719-729.
- [92] Veltkamp R.C.: Survey of Continuities of Curves and Surfaces. Computer Graphics Forum, 1992, 11, s. 93-112.
- [93] Veron M., Ris G., Musse J.-R: Continuity of biparametric surface patches. Computer-Aided Design, 1976, 8(4), s. 267-273.
- [94] Xu G., Pan Q., Bajaj C.L.: Discrete surface modelling using partial differential equations. Computer Aided Geometric Design, 2006, 23, s. 125-145.
- [95] Ye X.: The Gaussian and mean curvature criteria for curvature continuity between surfaces. Computer Aided Geometric Design, 1996, 13, s. 549-567.
- [96] Ye X., Nowacki H.: Ensuring compatibility of G2-continuous surface patches around a nodepoint. Computer Aided Geometric Design, 1996, 13, s. 931-949.
- [97] Ye X., Liang Y, Nowacki H.: Geometrie continuity between adjacent Bézier patches and their constructions. Computer Aided Geometric Design, 1996, 13, s. 521-548.
- [98] Zheng J., Wang G., Liang Y: GCn continuity conditions for adjacent rational parametric surfaces. Computer Aided Geometric Design, 1995, 12, s. 111-129.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA6-0038-0002