PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interfaces in fibre reinforced composites: micromechanical properties and their effect on the composite behaviour

Autorzy
Identyfikatory
Warianty tytułu
PL
Warstewki graniczne w kompozytach wzmocnionych włóknami: właściwości mikromechaniczne i ich wpływ na jakość kompozytów
Języki publikacji
EN
Abstrakty
EN
The main focus of the work is the characterisation and description of the properties of the fibre-matrix interface in continuous fibre reinforced composite materials. A unique in-situ Scanning Electron Microscope (SEM) Push-out technique for the measurement of micromechanical properties of the fibre-matrix interface was developed. It combines the materials analysis capabilities of SEM with a high resolution loading and measurement capability and presents the advantage of the possibility of observing the mechanisms of interfacial failure behaviour. The proposed method uses thin sections of real composites and allows the study of the effect of composite processing and of the service conditions on the micromechanical properties of the fibre-matrix interface and therefore on the overall composite behaviour. Temperature dependent interfacial properties (debonding and frictional sliding characteristics) of nearly all kind of long fibre composite materiais can be measured in a reliable way. Additionally, a special test configuration was evaluated to observe the crack propagation during the push-out process. As experimentally proved in this work, it allows in particular to differentiate between the top-to-bottom debonding (assumed in most analytical models) and the bottom-to-top debonding also taking place in some composite materials. An energy based model valid for both debonding model (top-to-bottom and bottom-to-top) was presented. With this model, the intrinsic interfacial properties (interfacial fracture energy, fibre-matrix sliding stress, friction coefficient and residual stresses) can be determined from the load-displacement characteristics measured in the push-out test. The successful use of the SEM Push-out method for the characterisation and optimisation of the fibre-matrix interfaces in various composites encompassing metal-, ceramic- and polymer-matrix composites, is demonstrated on different case studies. In particular the author estimated temperature dependent mechanical characteristics of interfaces in the following composites: SiC(Nicalon@NL207)/AI, Alz03(Saphikon)/AI, SiC(SCS-6 or DRA Sigma1240)/Ti6AI4V, SiC(Nicalon@)/borosilicate glass, SiC(Nicalon@)/CAS, GF/PET, which are mostly lacking in The main focus of the work is the characterisation and description of the properties of the fibre-matrix interface in continous fibre reinforced composite materials literature but are urgently needed by composite engineers materials. The interrelationship between the micromechanical interfacial properties and the macroscopic composite properties was studied for the investigated composites. Different issues in composite design and optimisation as for example the selection of main composite components (fibre, matrix), the use of interlayers, are described in the light of the interfacial properties. The work underlines the need to consider the fibre-matrix interface as a third (besides fibre and matrix) composite component.
PL
W pracy podjęto zagadnienie pomiaru i opisu własności mikromechanicznych warstwy granicznej włókno-osnowa w kompozytach wzmocnionych włóknami ciągłymi. W tym celu została opracowana inowacyjna metoda badania przyczepności włókien do osnowy polegająca na wypychaniu (push-out) włókien elementarnych z osnowy przy wykorzystaniu mikroskopu skaningowego (SEM). Dzięki zastosowaniu mikroskopu skaningowego metodą tą mogą być badane również kompozyty z włóknami o małej średnicy ( 5 11m). Metoda pozwala na obserwacje zjawisk towarzyszących procesowi dekohezji włókna niezbędną dla poprawnej analizy wyników pomiarowych i zrozumienia korelacji między własnościami warstwy granicznej a zachowaniem się kompozytu. W odróżnieniu od innych metod pomiarowych (np. test "pull-out"), metoda ta pracuje przy wykorzystaniu kompozytów rzeczywistych o dowolnej osnowie i uwzględnia szeroki zakres temperatury pomiaru (23-1200°C). W uzupełnieniu do standardowej wersji testu, została opracowana specjalna technika pozwalająca na obserwacje kierunku rozprzestrzeniania się pęknięcia podczas procesu dekohezji na granicy rozdziału włókno-osnowa. Pozwala ona rozróżnić między dekohezją zachodzącą od górnej, obciążonej strony próbki ("top-to-bottom debonding"), leżącej u podstaw większość modeli analitycznych, od dekohezji przebiegającej w przeciwnym kierunku ("bottom-to-top debonding"). Bazując na poczynionych obserwacjach, przedstawiony został model energetyczny pozwalający na wyznaczenie własności mikromechanicznych warstwy granicznej włókno-osnowa, wsółczynnika tarcia, naprężenia resztkowego, niezależnie od kierunku rozęcia dekahezyjnego. Podano przykłady skutecznegoozastasawania metady SEM push-out dla warstwy granicznej włókno-osnowa w kompozytach o różnej osnowie (metapolimerowa). Autorka, w szczególności skupiła się na określeniu charakterystyk mechanicznych warstwy granicznej w kompozytach takich, jak: AIP3w! (Saphikan)/AI, SiCw! (SCS-6 i DRA Sigma1240)fTi6AI4V, barokrzemianowe, SiCw!(Nicalan@)/CAS, GFwIIPET, które do tej pory ;kramnym wymiarze. Na wybranych przykładach został opisany wpływ wyników eksploatacji kompozytu na tego typu charakterystyki. Poruszone ia projektowania i optymalizacji kompozytów jak na przykład dobór wych (włókna-osnowa), czy zastasowanie warstw pośrednich. Praca V granicznej jaka trzeciego - obok osnowy i włókna - kampanentu go', którego własności muszą być uwzględniane przy projektowaniu wa (energia pękania, współczynnik tarcia, naprężenia resztkowe) niezależnie od kierunku rozprzestrzeniania się pęknięcia dekahezyjnego. W pracy zaprezentawano przykłady skutecznego zastasowania metody SEM push-aut dla opisu zachowania warstwy granicznej włókna-osnowa w kampozytach o różnej osnowie (metalowa, ceramiczna oraz polimerowa). Autorka, w szczególności skupiła się na określeniu temperaturowych zależności charakterystyk mechanicznych warstwy granicznej w kampazytach takich jak: SiCw!(Nicalan@)/AI, AIP3w! (Saphikan)/Al, SiCw! (SCS-6 i DRA Sigma1240)ffi6AI4V, SiCw! (Nicalan@)/szkła barokrzemianawe, SiCw!(Nicalan@)/CAS, GFwl/PET, które da tej pory w literaturze istniały w skromnym wymiarze. Na wybranych przykładach został opisany wpływ procesu produkcji i warunków eksploatacji kompozytu na tego typu charakterystyki. Poruszone zostały różne zagadnienia projektowania i aptymalizacji kompozytów jak na przykład dobór komponentów podstawowych (włókna, osnowa), czy zastosowanie warstw pośrednich. Praca uwidacznia rolę warstwy granicznej jako trzeciego - obok osnowy i włókna - komponentu materiału kompozytowego, którego własności muszą być uwzględnione przy projektowaniu kompozytu.
Rocznik
Tom
Strony
3--95
Opis fizyczny
Bibliogr. 170 poz., rys., wykr., tab.
Twórcy
  • EMPA Swiss Federal Laboratories for Materials Testing and Research
Bibliografia
  • [1] Evans A.G., Zok F.W. and Davis J., The Role of Interfaces in Fiber-Reinforced Brittle Matrix Composites, Composites Science and Technology, 42 (1991) 3-24.
  • [2] Grande D.H., Mandell J.F. and Hong K.C.C., Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites, J. of Materials Science, 23 (1988) 311-328.
  • [3] Kerans R.J., Hay R.S. and Pagano N.J., The Role of the Fiber-Matrix Interface in Ceramic Composites, Ceramic Bulletin, 68 [2] (1989) 429-442.
  • [4] Kim J.-K. and Mai Y.-W., High Strength, High Fracture Toughness Fibre Composites with Interface Control-A Review, Composites Science and Technology, 41 (1991) 333-378.
  • [5] Köck T., Brendel A., and Bolt H., Interface reactions between silicon carbide and interlayers in silicon carbide-copper metal-matrix composites, Journal of Nuclear Materials, In Press, 2007 (Corrected Proof available online, 19 January 2007).
  • [6] Janczak J., Zum Design von faserhaltigen Metallmatrix-Werkstoffen mit optimierten mechanischen Eigenschaften, PhD Thesis, University of Dortmund, 1994.
  • [7] Daniel A.M., Interfacial Properties of Fibre Reinforced Ceramic Matrix Composites, PhD Thesis, University of Warwick, 1994.
  • [8] Hu W., Weirich T., Hallstedt B., Chen H., Zhong Y., and Gottstein G., Interface structure, chemistry and properties of NiAl composites fabricated from matrix-coated single-crystalline Al2O3 fibres (sapphire) with and without an hBN interlayer, Acta Materialia, 54 [9] (2006) 2473-2488.
  • [9] Brendel A., Popescu C., Schurmann H., Bolt H., Interface modification of SiC fibre/copper matrix composites by applying a titanium interlayer, Surface and Coating Technology, 200[1-4] (2005) 161-164.
  • [10] Ermel R., Beck T., Kerscher E., Analysis of failure behaviour of carbon/carbon composite made by chemical vapour infiltration considering fibre, matrix and interface properties, International Journal of Materials Research, 97 [10] (2006) 1401-1409.
  • [11] Evans A.G. and Marshall D.B., The mechanical behaviour of ceramic matrix composites, Acta metallurgica materialia, 37 [10] (1989) 2567-2583.
  • [12] Evans A.G., Perspective on the Development of High-Toughness Ceramics. J. of the American Ceramic Society, 73 [2] (1990) 187-206.
  • [13] Evans A.G., The mechanical properties of reinforced ceramic, metal and intermetallic matrix composites. Materials Science and Engineering, A143 (1991) 63-76.
  • [14] Weaver J.H., Rannou J., Mattoni M.A., Zok F.W., Interface properties in a porous-matrix oxide composite, Journal of the American Ceramic Society, 89 [9] (2006) 2869-2873.
  • [15] Janczak J.,Development and Application of a Composite Interfacial Test Technique for Use In a Scanning Electron Microscope (Presentation), 4th Int. Conference on Interfacial Phenomena in Composite Materials (IPCM/4), Eindhoven, Netherlands, 12th September 1995, poster.
  • [16] Janczak J., Rohr L., Schulz P., Degischer H.P., Grenzflächen-untersuchungen an endlosfaserverstärkten Aluminiummatrix-Verbund-werkstoffen für die Raumfahrttechnik, Oberflächen Werkstoffe 6 (1995) 16-19.
  • [17] Janczak J., Stackpole R., Bürki G., Rohr L, The Use of Push-out Technique for the Determination of Interfacial Properties of Metal-Matrix-Composites, Success of Materials by Combination, ed. by U. Meier and M.A. Erath, Basel, Switzerland, (1996) 417-426.
  • [18] Pearce D.H., Janczak J., Boccaccini A.R., Ponton C.B. and Rohr L., Characterisation of a pressureless sintered sapphire fibre reinforced mullite matrix composite. Materials Science & Eng. A (Structural Materials: Properties, Microstructure and Processing), A214 (1996) 170-173.
  • [19] Janczak J., Buerki G. and Rohr L., Interfacial characterisation of MMCs and CMCs using a SEM Pushout technique, Key Engineering Materials, 127-131 (1997) 623-630.
  • [20] Boccaccini A.R., Janczak-Rusch J., Pearce D.H., Dlouhy I., Kern H., Thermoschock beständigkeit und das Alterungsverhalten von faserverstärkten Glas-Matrix-Verbundwerkstoffen, Vortragsband zur DGM-Tagung Verbundwerkstoffe und Werkstoffverbunde, Kaiserslauten, September 17-19, 1997, DGM Informationsgesellschaft, Frankfurt, (1997) 209-214.
  • [21] Lüthi B., Reber R., Janczak-Rusch J., Rohr L., Mayer J., Wintermantel E., Characterization of the GF/PET Interface in Knitted Composites by means of the Push-out Technique, Proc. of Symposium of Interfacial Materials Science on Composites (SIMS-C VI), Osaka, Japan, May 7-9, 1997.
  • [22] Janczak-Rusch J, Boccaccini A.R., Rohr L., Measurement of Micromechanical Interfacial Properties of Nicalon/borosilicate Glass at Elevated Temperatures by SEM-Pushout Technique, Proc. of Workshop on Composite Materials: Issues in Processing and Mechanics, Mescalero, New Mexico, October 5-8, 1997.
  • [23] Janczak-Rusch J., Rohr L., Bestimmung der Grenzflächeneigenschaften von mit Glassfasergestrick (GF) verstärktem Thermoplast (PET) mittels Push-out-Methode, Bericht Projekte, EMPA, 1998, p.12.
  • [24] Kalton A.F., Howard S.J., Janczak-Rusch J. and Clyne T.W., Measurement of interfacial fracture energy by single fibre push-out testing and its application to the titanium-silicon carbide system, Acta Materialia, 46 (1998) 3175-3190.
  • [25] Janczak-Rusch J., Boccaccini A.R., Pearce D.H., Kern H., Thermoschockbeständigkeit und das Verhalten von SiC-faserverstärkten Glas-Matrix-Verbundwerkstoffen bei einer thermischen Wechsel-beanspruchung, Forschung im Ingenieurwesen, 64 (1998) 143-156.
  • [26] Janczak-Rusch J., Boccaccini A.R., Characterisation of Fibre/Matrix Interfaces using a SEM Push-out Indentation Apparatus, European Microscopy and Analysis, 7 (1999) 13-14.
  • [27] Janczak-Rusch J., Boccaccini A.R., Micromechanical Characterisation of Interfaces in Fibre Reinforced Composites, J. of Materials Processing Technology, 107-118 (2001).
  • [28] Chawla K.K., Liu H., Janczak-Rusch J. and Sambasivan S., Microstructure and properties of monazite (LaPO4) coated saphikon fibre/alumina matrix composites, Journal of the European Ceramic Society, 20 [5] (2000) 551-559.
  • [29] Janczak J., Evaluation einer Push-out-Apparatur zur Charakterisierung der Faser-Matrix-Grenzfläche eines Faserverbundwerkstoffs, Empa Projektbericht, Dossier-Nr. 154783, 1994.
  • [30] Janczak J., Faser Push-out Apparatur: Aufbau und Inbetriebnahme, Empa Projektbericht, Dossier-Nr. 156865, 1995.
  • [31] Janczak J., Installation der Wegmesseinheit und deren Integration in die Push-out Prüfung, Empa Projektbericht, Dossier-Nr. 160563, 1996.
  • [32] Janczak-Rusch, J., Bestimmung von Grenzflächeneigenschaften in Polymer-Matrix-Verbundwerkstoffen mittels Push-out Technik: Grundlagen, Empa Projektbericht, Dossier-Nr. 164700, 1997.
  • [33] Janczak-Rusch J., Push-out Technik: Einfluss von subjektiven Faktoren auf die Ergebnisse (statistische Verteilung), Empa Projektbericht, Dossier-Nr. 163694, 1997.
  • [34] Janczak-Rusch J., Bestimmung der Faser-Matrix-Grenzflächeneigenschaften von Verbundwerkstoffen mit einer spröden (Glas-) Matrix im Push-out Versuch, Empa Projektbericht, Dossier-Nr. 168109, 1998.
  • [35] Janczak-Rusch J., Grenzflächencharakterisierung von CF/PEEK (Gestrick) vor und nach der Auslagerung in SBF, Dossier Nr.: 171831, 1998.
  • [36] Bürki G., Janczak-Rusch J., Grenzflächeneigenschaften und Versagensmechanismen von SCS6/TiAl6V4 im Push-out Versuch, Empa Projektbericht, Empa Projektbericht, Dossier-Nr. 167580, 1998
  • [37] Janczak-Rusch J., Technische Entwicklung der Push-out Methode für Verbundwerkstoffe mit (sehr) dünnen Fasern, Empa Projektbericht, Dossier-Nr. 163784, 1998
  • [38] Janczak-Rusch J., Push-out/Push-in Vergleichmessungen mit der BAM, Empa Projektbericht, Dossier-Nr: 168108, 1999.
  • [39] Janczak-Rusch J., Faser/Matrix Grenzflächencharakterisierung, in: 73.10 Charakterisierung von Faserverbundwerkstoffen, Abschlussbericht FOP, Zürich, 1999.
  • [40] Young T., Cohesion of Fluids, Transaxt., Royal Society London, 95 (1805) 65-72.
  • [41] Schlapbach L., An Grenzflächen der Materie beobachtete Phänomene, www.unifr.ch/spc/UF/95octobre/schlapbach.html, 1995.
  • [42] Salkind T., Interfaces in Composite Materials, J. of Materials Science, 3 (1968) 12
  • [43] Baillie C., Emanuelsson J., Marton F., Building knowledge about the interface, Composites: Part A 32 (2001) 305-312.
  • [44] Metcalfe A.G.: Interfaces in Metallic Matrix Composites, Academic Press (1974)
  • [45] Drzal, Interfaces in Fiber Reinforced Composites; in: International Encyclopedia of Composites, Eds. S.T. Lee, VCH Publishers Inc., New York, V.1 (1990) 50.
  • [46] Brockmann W., Haftung als Basis für Stoffverbunde und Verbundwerkstoffe, DGM, (1998) 7-25.
  • [47] Bascon W.D.; Interphase in Fiber Reinforced Composites; in International Encyclopedia of Composites, Eds. S.T. Lee, VCH Publishers Inc., New York, V.2 (1990) 561.
  • [48] Caldwell D.L.; Interfacial Analysis; in International Encyclopedia of Composites, Eds. S.T. Lee, VCH Publishers Inc., New York, V.2 (1990) 322.
  • [49] Prewo K.M., Brennan J.J.; Glass Matrix Composites; in: International Encyclopedia of Composites, Eds. S.T. Lee, VCH Publishers, Inc., V.1 (1990) 330.
  • [50] Kim J.-K., Mai Y.-W., Engineered Interfaces in fibre reinforced composites, Elsevier, 2005.
  • [51] Wojciechowski S., Ogólne problemy projektowania i wytwarzania kompozytów, in: Kompozyty, Eds. A. Boczkowska et. al, Oficyna Wydawnicza Politechniki Warszawskiej, 2005.
  • [52] Davidge R.W., The Mechanical Properties and Fracture Behaviour of Ceramic-Matrix Composites (CMC) Reinforced With Continuous Fibres, in: Application of Fracture Mechanics to Composite Materials, Eds. K. Friedrich, (1993) 547.
  • [53] Weiß R., Modellvorstellungen über die Haftung bei C-faserverstärkten Polymeren mit duromerer und thermoplastischer Matrix, Haftung bei Verbundwerkstoffen und Werkstoffverbunden, Eds. W. Brockmann, DGM Informationsgesellschaft Verlag, (1990).
  • [54] Metcalfe A.G., Klein M.J., Effect on Interface on Longitudinal Tensile Properties; in: Composite Materials, (V.1: Interfaces in Metallic Matrix Composites), Eds. Metcalfe A.G., Academic Press (1974).
  • [55] Kardos J.L., Composite interfaces: Myths, mechanisms and modifications, Chemtech, 14 [7] (1984) 430-434.
  • [56] High-Performance Structural Fibers for Advanced Polymer Matrix Composites (2005), National Materials Advisory Board, http://www.nap.edu/openbook/0309096146/html.
  • [57] Evans A.G., Zok F.W., J. of Materials Science, 29 (1994) 3857-3896.
  • [58] Chawla K.K., Ceramic Matrix Composite, Champion and Hall, London, 1993.
  • [59] Mackin T.J., Yang J. and Warren P.D., Influence of fiber roughness on the sliding behaviour of sapphire fibers in TiAl and glass matrices, J.Am. Ceram.Soc., 75 (1992) 3358-3362.
  • [60] Jero P.D., Kerans R.J. and Parthasarathy T., Effect of interfacial roughness on the frictional stress measured using pushout tests, J.Am. Ceram. Soc., 74 (1991) 2793-2801.
  • [61] Parthasarathy T.A., Marshall D.B. and Kerans R.J., Analysis of the Effect of Interfacial Roughness on Fiber Debonding and Sliding in Brittle Matrix Composites, Acta metall. mater., 42 (1994) 3773-3784.
  • [62] Bright J.D., Danchaivijit S. and Shetty D.K., Interfacial Sliding Friction in Silicon Carbide-Borosilicate Glass Composites: A Comparison of Pullout and Pushout Tests, J. of the American Ceramic Society, 74 [1] (1991) 115-22.
  • [63] Favre J.-P., Vassel A. and Laclau C., Testing of SiC/titanium composites by fragmentation and push-out tests: comparison and discussion of test data, Composites, 25 [7] (1994) 482-487.
  • [64] Cho C., Holmes J.W. and Barber J.R., Estimation of Interfacial Shear in Ceramic Composites from Frictional Heating Measurements, J. of American Ceramic Soc., 74 [11] (1991) 2802-808.
  • [65] Butler E.P., Fuller E.R. and Chan H.M., Interface properties for ceramic composites form a single-fiber pull-out test, Mat. Res. Soc. Symp. Proc., 170 (1990) 17-25.
  • [66] Lau M.G. and Mai Y.-W., Some problems in fibre pullout and pushout: a Review, in: Proc. ICCE/2 Second International Conference on Composites Engineering, New Orleans, USA, 21.-24. August, 1995.
  • [67] Daniel A.M., Elizalde M.R., Martínez-Esnaola J.M., Janczak J., Residual Stress and Poisson Expansion Effects on the Fibre-Matrix Interfacial Properties measured in Fibre Push Tests, Ceramic Engineering & Science, 3 (1996) 225-233.
  • [68] Drzal L.T., Herrera-Franco P.J., Ho H., Fibre Matrix Interface Tests, in Comprehensive composite materials, Vol. 5: Test methods, nondestructive evaluation, and smart materials, Eds.-in-chief Anthony Kelly et al., Impressum, Amsterdam: Elsevier, 2000, pp. 71-111.
  • [69] Chambers R.S., McGarry F.J., Proc. of 14th Annual Technology and Managment Conference, SPI, 1957.
  • [70] Miller B., Muri P., Rebenfeld L., Composite Science Technology, 28 (1987) 17-32
  • [71] Faber K.T., CERAMIC COMPOSITE INTERFACES: Properties and Design, Annual Review of Materials Science, 27 (1997) 499-524.
  • [72] Drzal L.T., Fibre fragmentation test, SAMPE Journal, 19 (1983) 7-13.
  • [73] Mandel J.F., Chen J.-H., McGarry F.J., A Microdebonding Test for In-Situ Fibre-Matrix Bond and Moisture effects, Research Report, MIT, USA, 1980.
  • [74] Marshall D.B., An Indentation Method for Measuring Matrix-fibre Frictional Stresses in Ceramic Composites, J. Amer. Ceram. Soc., 67 (1984) C259-260.
  • [75] Lara-Curzio E., Farber M.K., Determination of interfacial properties and stresses in continuous fibre-reinforced ceramic composites by means of single-fibre indentation tests, in: Numerical Analysis and Modelling of Composite Materials, Eds. Bull, 1994.
  • [76] Honda K. and Kagawa Y., Analysis of shear stress distribution in pushout process of fiber-reinforced ceramics, Acta Metallurgica Materialia, 43 [4] (1995) 1477-1487.
  • [77] Zhou L.-M., Mai Y.-W., Ye L., Kim J.-K., Techniques for Evaluating Interfacial Properties of Fibre-Matrix Composites, Key Engineering Materials, 104-107 (1995) 549-600.
  • [78] Marshall D.B. and Oliver W.C., Measurement of Interfacial Mechanical Properties in Fibre-reinforced Ceramic Composites, J. Amer. Ceram. Soc., 70 (1987) 542-548.
  • [79] Koss D.A., et al., Interfacial shear und matrix plasticity during fiber push-out in a metal-matrix composite, Composites Science and Technology, 51 (1994) 27-33.
  • [80] Kallas M.N., et al., Interfacial stress state present in a "thin-slice" fibre push-out test, J. of Materials Science, 27 (1992) 3821-3826.
  • [81] Koss D.A., Kallas M.N. and Hellmann J.R., Mechanics of interfacial failure during thin-slice fiber pushout test, Materials Research Society, 273 (1992) 303-313.
  • [82] Rhyne E.P., Hellmann J.R., Galbraith J.M. and Koss D.A., Thin-Slice Fiber Pushout and Specimen Bending in Metallic Matrix Composite Tests, Scripta Metall. Mater., 32 (1995) 547-552.
  • [83] Koss D.A., Hellmann J.R. and Kallas M.N., Fiber Pushout and Interfacial Shear in Metal-Matrix Composites, JOM, 3 (1993) 34-37.
  • [84] Chandra N. and Ananth C.R., Analysis of Interfacial Behavior in MMCs and IMCs by the use of Thin-Slice Push-Out Tests, Comp. Sci. Tech., 54 (1995) 87-100.
  • [85] Mukherjee S., Ananth C.R., Chandra N., Evaluation of fracture toughness of MMC interfaces using thin-slice push-out tests, Scripta Materialia, 11 (1997) 1333-1338.
  • [86] Ghosn L.J., Eldridge J.I. and Kantzos P., Analytical modelling of the interfacial stress state during pushout testing of SCS-6/Ti-based composites, Acta Metall., 42 (1994) 3895-3908.
  • [87] Majumdar B.S. and Miracle D.B., Interface Measurements and Applications in Fiber-Reinforced MMC's, Key Engr. Mat., 116-117 (1996) 153-172.
  • [88] Lüthi B., Fitting procedure for estimation of interfacial properties of PMCs, Master Thesis, ETHZ, 1998
  • [89] Grathwohl G., Woltersdorf J., Bildung, Struktur, Nanochemie und Funktion von Grenzschichten in keramischen Faserverbundwerkstoffen, VDI Berichte, Vol. Reihe 5, Nr. 453, 1996.
  • [90] Kerans R.J., Theoretical Analysis of the Fiber Pullout and Pushout Tests, J. of the American Ceramic Society, 74 [7] (1991) 1585-1596.
  • [91] Eldridge J.I. and Brindley P.K., Investigation of interfacial shear strength in a SiC fibre/Ti-24Al-11Nb composite by a fibre push-out technique. J. of Materials science, 8 (1989) 1451-1453.
  • [92] Matthews F.L., Rawlings R.D., Composite Materials, Engineering and Science, CRC Press, 1999.
  • [93] Chan K.S. and Davidson D.L., Effects of Interfacial Strength on Fatigue Crack Growth in a Fibre-Reinforced Ti-Alloy Composite, Metallurgical Transactions A, 21 [6] (1990) 1603-1612.
  • [94] Dudek H.J., Analytical Investigations of Thermal Stability of the Interface in a SiC-Fibre Reinforced Ti6A14V-Alloy, Microchim. Acta, II (1990) 137-148.
  • [95] Evans A.G., Zok F.W. and Davis J., The Role of Interfaces in Fibre-Reinforced Brittle Matrix Composites, Composites Science and Technology, 42 (1991) 3-24.
  • [96] ldridge J.I., Environmental effects on fiber debonding and sliding in an SCS-6 SiC fiber reinforced reaction-bonded Si3N4 composite, Scripta Metallurgica et Materialia, 32 [7] (1995) 1085-1089.
  • [97] Eldridge J.I., Bhatt R.T. and Kiser J.D., Investigation of Interfacial Shear Strength in SiC/Si3N4 Composites, Ceramic Eng. Sci. Proc., 12 [7-8] (1991) 1152-1171.
  • [98] Eldridge J.I. and Honecy F.S., Characterization of interfacial failure in SiC reinforced Si3N4 matrix composite material by both fiber push-out testing and Auger electron spectroscopy. J. American Vacuum Society Technology, A8 [3] (1990) 2101-06.
  • [99] Hsueh C.-H., Interfacial properties of fiber-reinforced composites: Fiber push-in and slice compression tests, in: Composites Engineering (ICCE/1), New Orleans USA: International community for Composites engineering (ICCE), 1994.
  • [100] Kalton A.F., Ward-Close C.M. and Clyne T.W., Development of the tensioned push-out test for study of fibre/matrix interfaces, Acta Materialia, 25 [7] (1994) 637-641.
  • [101] Watson M.C. and Clyne T.W., The use of pushout testing to investigate the interfacial mechanical properties of Ti-SiC monofilament composites, in: Proc. 7th World Titanium Conference, San Diego, 1992.
  • [102] Aoki T., Yamane Y., Ogasawara T., Ogawa T., Sugimoto S. and Ishikawa T., Measurements of fiber bundle interfacial properties of three-dimensionally reinforced carbon/carbon composites up to 2273 K, Carbon, 45 [2] (2007) 459-467.
  • [103] Kuntz M. et al., Evaluation of interface parameters in push-out and pull-out tests, Composites, 25 [7] (1994) 476-481.
  • [104] Netravali A.N., Ruoff S. and Stone D., Continuous Micro-indenter Push-through Technique for Measuring Interfacial Shear Strength of Fiber Composites, Composites Science and Technology, 34 (1989) 289-303.
  • [105] Rausch G., Meier B. and Grathwohl G., A Push-out Technique for the Evaluation of Interfacial Properties of Fiber-reinforced Materials, J. of the European Ceramic Society, 10 (1992) 229-235.
  • [106] Wendorff J., Janssen R. and Claussen N., The fiber push-out test at high temperatures for interface characterization of ceramic/ceramic composites, in: European Conference on Composites Testing and Standardisation ECCM-CTS 2, Hamburg, Germany, 1994.
  • [107] Liang C. and Hutchinson J.W., Mechanics of the fiber pushout test, Mechanics of Materials, 14 (1993) 207-221.
  • [108] Degischer H.P., Leitner H., Schmitt Th., Druckinfiltration zur Herstellung von langfaser-Aluminiummatrix-Verbundwerkstoffen, VDI Berichte Nr. 734, 295-302, 1989.
  • [109] Degischer H.P., Schmitt Th., Leitner H., Mundl A., Faserverstärkte Aluminiummatrix-Proben hergestellt mittels Druckinfiltration", Moderne Aluminiumlegierungen, Ergebnisse der Werkstoff-Forschung, V.3., ed. by Speidel, M.O.; Uggowitzer, P. J., Verlag Thubal-Kain, 1990.
  • [110] Kaufmann H., Schmitt Th., Degischer H.P., Wetting-Dewetting Phenomena in Pressure Infiltrated Al-Composites, Proc. of the 12th Riso International Symposium on Materials Science, (1991) 441-448.
  • [111] Chang Y-W., Zangvil A., Lipowitz J., Characterization of Si, C, N, O fibers by analytical STEM and Scanning Auger techniques, in: Ceramic Transactions Vol. 2, Silicon Carbide'87, ed. Cawley J.D., Semler C.E., (1987) 435-443.
  • [112] Amateau M.F., Progress in the development of graphite aluminum composites using liquid infiltration technology, J. Composite Materials, 10 (1976) 279-297.
  • [113] Viala J.C., Bosselt F., Fortier P., Bouix J., Chemical interaction between silicon carbide Nicalon fibers and liquid aluminum-silicon alloys, Proc. Conf. London, ICCM 6 & ECCM 2, (1987) 2.146-2.155.
  • [114] Shetty D.K., Shear-Lag Analysis of Fiber Push-Out (Indentation) Tests for Estimating Interfacial Friction Stress in Ceramic-Matrix Composites, J. of the American Ceramic Society, 71 [2] (1988) C107-C109.
  • [115] Naik R.A., Simplified Micromechanical Equations for Thermal Residual Stress Analysis of Coated Fibre Composites, J. Comp. Tech. & Res., 14 [3] (1992).
  • [116] Kerans R.J., The role of coating compliance and fibre/matrix interfacial topography on debonding in ceramic composites, Scripta Metallurgica et Materialia, 32 [4] (1995) 505-509.
  • [117] Janczak J., Rohr L., Schulz P., Degischer H.P., Entwicklung von endlosfaserverstärkten Aluminiummatrix-Verbundwerkstoffen für die Raumfahrttechnik, Oberflächen Werkstoffe, 5 (1995) 8-9.
  • [118] Mall S., Nicholas T., Titanium Matrix Composites. Mechanical Behaviour, Technomic Publishing, 1998
  • [119] Jansson S., Deve H.E. and Evans A.G., The Anisotropic Mechanical Properties of a Ti matrix Composite Reinforced with SiC Fibres, Met.Trans., 22A (1991) 2975-2984.
  • [120] Jeng S.M., Yang J.-M. and Yang C.J., Fracture Mechanisms of Fiber-reinforced Titanium Alloy Matrix Composites. Part II: Tensile Behaviour, Mat Sci Eng, A138 (1991) 169-180.
  • [121] Majumdar B.S., Newaz G.M. and Ellis J.R., Evolution of Damage and Plasticity in Titanium-Based, Fiber-Reinforced Composites, Metall. Trans., 24A (1993) 1597-1610.
  • [122] Gunawardena S.R., Jansson S. and Leckie F.A., Modeling of Anisotropic Behavior of Weakly Bonded Fiber Reinforced MMC's, Acta Metall. Mater., 41 (1993) 3147-3156.
  • [123] Fox K.M., Cotterill P.J., Strangwood M. and Bowen P., Interfacial Properties and Fatigue Crack Propagation in Continuously Reinforced Ti/SiC Metal Matrix Composites, Composites, 21 (1994) 123-128.
  • [124] Wright P.K., Nimmer R., Smith G., Sensmeier M. and Brun M., The Influence of the Interface on Mechanical Behaviour of Ti-6Al-4V/SCS6 Composites, in: Interfaces in Metal-Ceramic Composites, R.Y. Lin, R.J. Arsenault, G.P. Martins and S.G. Fishman (ed.), TMS, (1990) 559-581.
  • [125] Watson M.C. and Clyne T.W., Reaction-Induced Changes in Interfacial and Macroscopic Mechanical Properties of SiC Monofilament Reinforced Titanium, Composites, 24 (1993) 222-228.
  • [126] Jeng S.M., Yang J.-M. and Yang C.J., Fracture Mechanisms of Fiber-reinforced Titanium Alloy Matrix Composites. Part I: Interfacial Behaviour, Mat Sci Eng, A138 (1991) 155-167.
  • [127] Clyne T.W., Feillard P. and Kalton A.F., Interfacial Mechanics and Macroscopic Failure in Titanium-based Composites, in: Life Prediction Methodology for Titanium Matrix Composites, W.S. Johnson, J.M. Larsen and B.N. Cox (ed.), ASTM STP1253, (1996) 5-25.
  • [128] Wood R.A. and Favor R.J. (ed.), Titanium Alloys Handbook, Metals and Ceramics Information Center (MCIC), Battelle's Columbus Laboratories, Columbus, Ohio, (1972) 121.
  • [129] Clyne T.W. and Withers P.J., An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, (1993).
  • [130] Chandra N., Ananth C.R. and Garmestani H., Micromechanical Modeling of Process-In-duced Residual Stresses in Ti-24Al-11Nb/SCS-6 Composite, J. Comp. Tech. Res., 16 (1994) 37-46.
  • [131] Eldridge J.I. and Ebihara B.T., Fibre Push-Out Testing Apparatus for Elevated Temperatures, J. Mat. Res., 9 (1994) 1035-1042.
  • [132] Chandra N., Ghonem H., Interfacial mechanics of push-out tests: theory and experiments, Composites: Part A, 32 (2001) 575-584.
  • [133] Phillipps A.J., Clegg W.J. and Clyne T.W., Fracture of Ceramic Laminates in Bending. Part II _ Comparison of Model Predictions with Experimental Data, Acta Metall. Mater., 41 (1993) 819-827.
  • [134] Mecholsky J.J., Engineering Research Needs of Advanced Ceramics and Ceramic-Matrix Composites, Ceramic Bulletin, 68 [2] (1989) 121-126.
  • [135] Hegeler H. and Brückner R., Fiber Reinforced Glasses, J. Mat. Sci., 24 (1989) 1191-1201.
  • [136] Klug T., Reichert J. and Brückner R., Thermal Shock Behaviour of SiC-Fibre Reinforeced Glasses, Glastech. Ber., 65 [1] (1992) 41-49.
  • [137] Benson P.M., Spear K.E. and Pantano G.C., Interfacial Characterization of Glass Matrix/Nicalon SiC Fibre Composites: A Thermodynamic Approach, Ceram. Eng. Sci. Proc., 9 (1988) 663-670.
  • [138] Daniel A.M., Elizalde M.R., Sanchez J.M., Janczak J. and Martinez Esnaola J.M., Interfacial micromechanical characterisation of a ceramic matrix composite, Key Engineering Materials, 127-131 (1997) 599-608.
  • [139] Rausch G., Meier B. and Grathwohl G., A Push-Out Technique for the Evaluation of Interfacial Properties of Fibre Reinforced Materials, J. Europ. Ceram. Soc., 10 (1992) 229-235.
  • [140] Boccaccini A.R., Pearce D.H., Janczak J., Beier W. and Ponton C.B., Investigation of the Cyclic Thermal Shock Behaviour of Fibre Reinforced Glass Matrix Composites Using a Non-Destructive Forced Resonance Technique, Materials Science&Technology, 13 [5] (1997) 852-859.
  • [141] Manns P., Brückner R., Elastisches Verhalten hochviskoser Glasschmelzen mit Bezug auf die Heißbiegefestigkeit, Glastech. Ber., 59 [4] (1986) 77-84.
  • [142] Barsoum M. and Elkind A., Effect of Viscous Flow on the Thermal Residual Stresses in a Monofilament SiC/Borosilicate Glass Composite, J. Mat. Sci., 30 [1] (1995) 69-74.
  • [143] Eldridge J.I., Elevated Temperature Fiber Push-Out Testing, Mat. Res. Symp. Proc., 365 (1995) 283-290.
  • [144] Boccaccini A.R., West G., Janczak J., Lewis M.H. and Kern H., Tensile behavior and cyclic creep of continuous fibre-reinforced glass matrix composites at room and elevated temperatures. Journal of Materials Engineering and Performance, 6 (1997) 344-348.
  • [145] Morscher G., Pirouz P. and Heuer A.H., Temperature Dependence of Interfacial Shear Strength in SiC-Fibre Reinforced Reaction-Bonded Silicon Nitride, J. Am. Ceram. Soc., 73 [3] (1990) 713-720.
  • [146] Grathwohl G. and Woltersdorfer J., Bildung, Struktur, Nanochemie und Funktion von Grenzschichten in keramischen Faserverbundwerkstoffen, VDI5 [453] 1996.
  • [147] Hsueh C.-H., Analytical Evaluation of Interfacial Shear Strength for Fiber-Reinforced Ceramic Composites, J. of the American Ceramic Society, 71 [6] (1988) 490-493.
  • [148] Gmelins, Handbuch der anorganischen Chemie, MPI Institut, Verlag Chemie, Weinheim, 1968.
  • [149] Beier W., Hart im Nehmen, Tough and Strong, Schott-Information, 73 (1995) 3-6.
  • [150] Wang H. and Singh R.N., Thermal Shock Behaviour of Ceramics and Ceramic Composites, Int. Mat. Reviews, 39 (1994) 228-244
  • [151] Boccaccini A.R., Janczak-Rusch J., Pearce D.H., Kern H., Assessment of thermal shock induced damage in SiC-NicalonTM fibre reinforced borosilicate glass matrix composites, Comp. Sci. Technology, 32 (1995) 74-78.
  • [152] Kuntz M., Meier B., Gratwohl G., Residual stresses in fiber-reinforced ceramics due to thermal expansion mismatch, Journal Am. Ceramic Society, 76 (1993) 2607-12.
  • [153] Plucknett K.P., Lin H.-T., Braski D.N and Becher P.F., Environmental Aging Degradation in Continuous Fibre Ceramic Composites, Composites, 77 (1994) 3606-12.
  • [154] Chawla K.K., The High-Temperature Application of Ceramic-Matrix Composites, JOM, 12 (1995) 19-21.
  • [155] Chawla K.K, Ferber M.K., Xu Z.R. and Venkatesh R., Interface engineering in alumina/glass composites, Materials Science and Engineering, A162 (1993) 35-44.
  • [156] Chawla K.K., Schneider H., Schmücker M. and Xu Z.R., in: Processing and Design Issues in High Temperature Materials, TMS, Warrendale, PA, (1997) 235-245.
  • [157] Pearce D.H., Ponton C.B. and Jickells A.J., Fabrication of a Sapphire Fibre Reinforced Ceramic Matrix Composite, Br. Ceram. Trans, 12 (1999) 345-349.
  • [158] Evans A.G., The Mechanical Performance of Fiber-reinforced Ceramic Matrix Composites, Materials Science and Engineering, A107 (1989) 227-239.
  • [159] Pearce D.H., PhD Thesis, The University of Birmingham, 1995.
  • [160] Morgan P.E.D. and Marshall D.B., Functional interfaces for oxide/oxide composites, Mater. Sci. Eng., A162 (1993) 15-25.
  • [161] Wagner H.D., Lustiger A., Effect of water on the mechanical adhesion of the glass/epoxy interface, Composites, 25 [7] (1994) 613-616.
  • [162] Karger-Kocsis J., Yuan Q., Mayer J., Wintermantel E., Transverse Impact Behavior of Knitted Carbon Fiber Fabric Reinforced Thermoplastic Composite Sheets, J. Thermopl. Compos. Mater., 10 (1997) 163-172.
  • [163] Reber R., Mechanical behaviour of KFRCs, PhD Thesis, ETHZ; 1998.
  • [164] National Materials Advisory Board (NMAB), Frontiers of Materials Science, 2003.
  • [165] DiFrancia C., Ward T.C., Claus R.O., The single-fibre pull-out test. 1: Review and interpretation, Composites: Part A, 27A (1996) 597-612.
  • [166] Glinicki M.A., Janczak-Rusch J., Evaluation of fibre-cement interfacial properties by SEM-based push-out tests, Presentation at E-MRS Fall Meeting Warsaw, 2005.
  • [167] Sobczak N., Zjawisko zwilżania jako czynnik kształtujący strukturę i właściwości materiałów metalowo-ceramicznych wytwarzanych metodami ciekło-fazowymi, Praca habilitacyjna, PAN, 2005.
  • [168] Quek M.Y., Analysis of residual stresses in a single fibre-matrix composite, International Journal of Adhesion and Adhesives, 24 [5] (2004) 379-388.
  • [169] Dai Y., Kim J.K., Park J., Numerical study of the single fibre push-out test: Part III. Singularity of interface stresses, Composite Interfaces, 10 [1] (2003) 17-39.
  • [170] Guo S., Honda K., Kagawa Y., Interface debonding from bottom face and frictional transition during pushout testing of a tungsten fiber-epoxy matrix composite, Composites Science and Technology, 65 [11-12] (2005) 1808-1814.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA6-0038-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.