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ABSTRACT 

 

Equivalent weight matrix XP


 plays a major role in robust, free adjustment. It is 

contained in the optimization criterion XXXX dPd)(d


T , where Xd is an increment 

vector to approximate coordinates of all network points. Assuming, that  XXX dTPP 


, 

where XP  is a priori weight matrix, the paper presents the way how to calculate an 

attenuation matrix  XdT ( Xd  is a standardized increment vector). Special attention is 

paid to the way of increment standardization and to computation of an increment 

variance matrix.  
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1. INTRODUCTION 

 

There are some problems, in geodesy or navigation, where observation sets contain 

some degree of freedom naturally e. g. (Mittermayer, 1980; Wolf, 1972). A geodetic 

network consists of some points with approximate coordinates only, is a typical example 

of such problem. Increments to these coordinates are computed on the base of an 

optimization criterion. Thus during the estimation process the adjusted network is 

fitted in the approximate one optimally (according to the assumed optimization 

criterion). That process could be disturbed by some “badly” computed (or assumed) 

approximate coordinates (outliers), which forces to apply a robust, free adjustment 

(such a concept was presented for example in (Czaplewski, 2004; Wiśniewski, 2005). 

The base for that robust method is application of an equivalent weigh matrix of 

increments (similarly to usage of an equivalent weigh matrix of observations in classic, 

robust methods (Wiśniewski, 1999; Yang, 1994). An attenuation matrix, which is 

computed on the base of attenuation functions, plays a major role in such equivalent 

solution. The paper presents some suggestions concerning assumptions and 

computation of such matrices and functions.      
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2. FREE ADJUSTMENT. COVARIANCE MATRIX 

 

Let a coefficient matrix unR ,A , from the residual equation  lAdv X  , be not 

a column full rank ( 1,nRv  - residual vector, 1,uRXd - parameter vector, 1,nRl  - 

vector of free terms). Let it assume that   urrank A , then 0 rud  is a defect  

of the residual equation. 

 

The following vector can be a solution of the inconsistent equation 0lAdX  (with 

)0d e.g. (Kubačkova et. al., 1987; Prószyński, 1981; Wiśniewski, 2005) 

 lAd
XPPX

ˆ  (2.1) 

Such solution fulfills the conditions: 

 i)        minˆˆˆˆ  vPvldAPldA XX

T
T

 

 ii)   minˆˆ XXX dPd
T  

where nnR ,P is a weight matrix of observations and uuR ,XP is a weight matrix of such 

approximation 
X  (for example approximate coordinates of geodetic network points) 

that 

 XdXX     

Thus 
X  is regarded as a pseudo observation vector with the assumed weight matrix 

( XP  a priori). 

 

The presented solution (2.1) is based on usage of 


XPPA  which is a general inverse matrix 

with the minimum norm  

 min
2


XPXXXX ddPd
T  

in the least squares method ( minPvv
T ). Such inverse is of the following, general form 

   PAQPQQPA XXXXXPPX

T  11
    (2.2) 

( PAAQX

T ). It can be proved (e. g. Perelmuter, 1979; Wolf, 1972; Wiśniewski, 2005)  

that, if   dnrn RR ,

2

,

1 ,  AAA ,  ddrr RRDiag ,,

21
,  XXX PPP   and 

    rrankrank  1AA  then 

    ddrr RRDiag ,,11 ,  
0ΘQPQ XXX  

and afterwards 

   PABBPBPA XXPPX

TTT

1

111    

where  2111 , PAAPAAB
TT  and 

T
BBPΘ

1

X

 . 

 

Let 
12

0

 PCx  be a covariance matrix of the observation vector x, and 
12

0

 XXX PC   be 

a covariance matrix of the vector 


X . If additionally,  XFx   is a set of observation 
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equations, then the vector of free terms is   xXFl   , and its covariance matrix can 

be written in the form 

 
12

0

12

0

  PAAPC XXl  T
    (2.3) 

where XF(XA  ) . Considering the solution (2.1) and the above formula, the 

covariance matrix of 
Xd̂ can be derived as follows  

 
    

   TTT

TTT

σσ

σσ









XXXX

XXXXX

PPPPPPXPPX

PPX

2

XPPPPlPPd

APAAAAPA

APAAPAACAC

12

0

12

0

12

0

1

0ˆ

             (2.4) 

It should be noted that the first term in the above formula is related to errors of the 


X vector and the second one to errors of the observation vector x . Thus, applying the 

following notation 

    XdXPPXPPXXd XXXX

QAAAPAC ˆ

2

0

12

0ˆ    TT    (2.5) 

  
xdPPPPxd XXXX

QAPAC ˆ

2

0

12

0ˆ    T
   (2.6) 

the covariance matrix of Xd̂ can be finally written in the form 

  
xdXdxdXdXxdXdd XXXXXXX

QQQQCCC ˆˆ

2

0ˆ
2

0ˆ

2

0ˆˆˆ    r  (2.7) 

where 2

0

2

0  Xr . 

 

3. ROBUST, FREE ADJUSTMENT. ATTENUATION MATRIX 

 

The idea of a robust, free adjustment was formulated in the paper (Czaplewski, 2004) 

(mainly to identify outlying adjustive points in sea navigation). The further 

development of the idea, for geodetic adjustment purposes, was shown in the paper 

(Wiśniewski, 2005). 

 

Classic methods of robust adjustment in geodesy are usually based on the equivalent 

weight matrix  PvTP 


application (  vT  is an attenuation matrix e. g. (Wiśniewski, 

1999;  Yang, 1994). The problem of robust, free adjustment can be solved in the similar 

way. Assuming that 
X  is the vector of independent pseudo observations with the 

diagonal weight matrix XP , the following equivalent matrix can be proposed 

   XXX PdTP 


     (3.1) 

where       
u

dtdtDiag X1X ,,XdT  ( Xd is the standardized increment vector). 

Function  
u

dddddt X2X1XXX ,,,,  is an attenuation function with the following 

essential properties: 

 

 
 

   

















jijiji
dtdtddddiii

dfordtii

kkdfordti

XXXXXXX

XXX

XXXXX

:,,)

1)

,1)

            (3.2) 
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where XXX ,kk is an interval accepted for standardized increments Xd . Referring 

to the Danish attenuation function, that is widely used in “classic” robust adjustment, 

one can propose the following attenuation function 

  
  









XXXX

XX

X
exp

1

dforkdl

dfor
dt g     (3.3) 

(l, g are control parameters). 

 

The way of increment standardization is one of the main problems in robust, free 

adjustment (it usually influences the number of necessary iterative steps). Generally,  

the standardization should be done on the base on the estimated covariance matrix  

 
xdXdd XXX

QQC ˆˆ

2

0ˆ ˆˆˆ   r , where  drnT  Pvv
2

0̂  is an estimator of the 

covariance coefficient 2

0 , and 2

0

2

0
ˆˆˆ  Xr . The estimate 2

0
ˆ

X is not precisely defined so 

far. If one can assume that the matrices xC and XC are assessed at the same level then 

12

0

2

0   Xr  hence 1ˆ r . Thus, with sufficient approximation 

  
XXXX dxdXdd

QQQC ˆ
2

0ˆˆ

2

0ˆ ˆˆˆ         (3.4) 

where  
xdXdd XXX

QQQ ˆˆˆ   . 

 

The following vector of the adjusted increments is the solution of the robust, free 

adjustment with application of the attenuation matrix  XdT   

 lAd
XPPX

 ˆ      (3.5) 

whereat 

 

      
  






























11

1

111

limˆ

lim

jjj

TTjTjjj

j

j

j

j

XXX

XXPPX

XX

XX

PdTP

PlABPBBP-lAd

dd

PP

X



   (3.6) 

 

It is important to determine the matrix  j

XdT  in such a way that 01 j

XP . Thus it is 

necessary to put in the process a such numerical protection, that if for big standardized 

increment 
i

dX  is   edt
i
X  then at most    e

ii


,XdT  (e is a numerical threshold for 

singularity of 1j

XP ).  

 

4. EXAMPLE 

 

The figure 1 presents a free geodetic network taken to the example computations.  
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Fig. 1. Free network 

 

The values of the approximate point coordinates and the observations were as follows 

  
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  

It was also assumed that IPX   and md 02.0 , g020.0 . 

The following results were obtained applying classic, free adjustment 

   





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
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
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Let now, the approximate coordinate XC be disturbed with a large gross error  

b = 2.00 m. It means that m00.102XC 


(other coordinates stay the same) and  

  











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




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Adjusting the network once again one can obtain 

A 

C 

B 

d1 

d2 

d3 

 

X 

Y 
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The presented earlier robust, free adjustment can be applied to decrease the influence 

of the outlying coordinate. Using the attenuation function (3.3) for l = 5*10
-4

,  

g = 2, kx = 2.5 and the procedure presented in the paper one can obtain the following 

results  
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The iterative process leading to the above solution is presented in the table 1. 

 

Table 1. 

 
Xd  

Xd   XdTDiag  XPDiag  

It
er

a
ti

v
e 

st
ep

s 

 

 

0 

0.317 45.208 0.402 0.402 

-0.184 -18.979 0.873 0.873 

0.851 87.518 0.027 0.027 

0.317 45.208 0.402 0.402 

-1.168 -117.328 0.001 0.001 

-0.133 -13.329 0.943 0.943 

 

 

1 

0.002 1.801 1.000 0.402 

-0.027 -2.876 1.000 0.873 

0.064 3.249 1.000 0.027 

0.002 1.801 1.000 0.402 

-1.954 -92.031 0.018 2.5*10
-5 

0.024 2.736 1.000 0.943 

 

 

2 

-0.003 -2.493 1 0.402 

-0.026 -2.742 1.000 0.873 

0.051 2.588 1.000 0.027 

-0.003 -2.493 1 0.402 

-1.967 -92.029 0.018 4.5*10
-7

 

0.026 2.879 1.000 0.943 

 

 

3 

-0.003 -2.574 1.000 0.402 

-0.026 -2.740 1.000 0.873 

0.051 2.576 1.000 0.027 

-0.003 -2.574 1.000 0.402 

-1.967 -92.029 0.018 8.3*10
-9

 

0.026 2.882 1.000 0.943 
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The simple example shows than applying the special attenuation matrix it is possible to 

decrease or even erase the effect of outlier that can occur among approximate 

coordinates in free geodetic network.  
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