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1 INTRODUCTION 

 
Neural networks have already been applied to a range of problems in cartography and 
GIS, including: thematic (semantic) classification of the attributes of objects, 
classification of spatial objects, aggregation and generalization of objects, and others 
(Meng, 1993; Müller, 1992; Openshaw et al., 1991).  Among the key properties of neural 
networks which make them useful in such applications are: their ability to process data 
with no well-defined data model, or even a good understanding of the problem nature, 
the ability to learn data processing algorithms without programming, to generalize, the 
ability to eliminate glitches and errors in data. 
 
One specific area is the application of neural networks to pattern recognition and land 
use classification in raster images, particularly satellite images (Meng, 1993).  The 
approaches here can be divided into: per-pixel classification methods, which 
concentrate on increasing the spatial accuracy limited by the available data resolution, 
and per-parcel, or per-field, classification methods, which combine the per-pixel 
techniques with further processing, often statistical classification filters (Berberoglu et 
al., 2000; German and Gahegan, 1996; Liu et al., 2002; Miller et al., 1995; Tatem et al., 
2001; Venkatesh and S. Kumar-Raja, 2003). 
 
The identification of textures was introduced to raster image processing (Haralick, 
1979) and gradually developed into a mature technology (Haralick and Shapiro, 1992).  
Texture information has been recognized as a useful addition to spectral data obtained 
directly from images to help in the task of segmentation of images (Barr and Barnsley, 
1999; Berberoglu et al., 2000; Carr, 1996; Clausi and Zhao, 2002; Haralick and 
Shapiro, 1992; Ryherd and Woodcock, 1996; Zhang, 1999).  Various combinations of 
the above approaches have been also applied and described previously by some of the 
authors of this paper (Iwaniak et al., 2003, Iwaniak et al., 2005). 
 

2 MOTIVATION 

 
During the last decade the geographic information systems in Poland started utilizing 
aerial and satellite images on a large scale.  Due to the implementation of the IACS 
project, high-resolution aerial photographs and, partially, satellite images of most of the 
country are being produced, and, for the first time, the whole country is covered with a 
current orthophoto map.  Furthermore, within the scope of this project it is expected 
that around 20% of the country will have a new orthophoto map every year.  Aside of 



their utilization in the verification in the farmers subsidies system, these data can be 
used in other applications.  In Poland the work is in progress on the National 
Geographical Information System and the Spatial Data Infrastructure.  One of the 
components in the system's design is the Topographic Data Base (TDB), which make up 
the reference data.  This component is responsible for doing several tasks, including 
topographic data collection on the regional level.  It contains topographic objects 
related to the topographic maps in 1:10000 scale.  By assumption these objects are 
retrieved from the updated orthophotomaps. 
 
These efforts will create an opportunity and potential for creating and having the most 
actual TDB, but under the assumption that large amount of data will be effectively 
analyzed.  As 10 thousand sheets of orthophotomaps are going to be processed every 
year, the need for supporting software tools is obvious.  Such tools could be used for 
regions of special interest highlighting, like building, agriculture areas, etc., as well as in 
the process of database construction and verification.  It could be also used for database 
updating, pointing outs parts of the map that should be updated by comparing the 
vector map created from the segmented image with the corresponding vector map 
stored in the TDB. 
 
The need for new and effective techniques for the analysis and feature recognition in 
high-resolution images is therefore evident.  The questions that need to be answered 
are: what algorithms can be applied, what kind of image characteristics should be used 
(eg.: RGB intensities, spectral intensities, various statistical features, textural features, 
etc.), and how to evaluate the processing results. 
 

3 METHODS UNDER CONSIDERATION 

 

3.1 Neural Networks 

Feed-forward artificial neural networks were used in the method proposed. They were 
designed and trained as a single class classifiers. Their architecture was dictated by the 
kind of image processing applied. Thus the number of units in the networks input layer 
varied according to the method applied (size of the mask and the number of features 
considered, see Fig.1).  All input values were normalized to the range of 0.0 to 1.0. There 
were two hidden layers in the networks, with 9 units for each layer. Networks were 
trained to recognize only one class, thus only one output unit was needed.  
The artificial neural networks were trained with RProp (Resilient Propagation) 
learning algorithm. The training pattern, consisting of the set of provided input and 
expected output values, was created in the following way. At first an original training 
image was classified by an expert. The resulting image contained regions marked with 
labels corresponding to the classes assigned. Then a set of reference binary images was 
created by regions with the same label separation. The number of images was equal to 
the number of classes distinguished. Next for each considered position (for each pixel) in 
the original image the set of input values was computed according to the method 
applied. The set of output values consisted of a single binary value indicating whether 
the pixel of interest should be assigned to the particular class or not. This information 
was taken from a corresponding reference image. 
After training phase artificial neural network was employed as a classifier. Testing 
pattern used then was prepared in the same way as the training pattern. The results of 
classification for the testing pattern (not used in the training process) and the training 



pattern were stored in the resulting images. The resulting images and the accompanying 
reference images were used to evaluate classification results. 

3.2 Texture features based on GLCM 

Gray level co-occurrence matrix (GLCM) method allows estimation of an image 
features related to second-order statistics. The method starts with a counting of the 
number of occurrences of the pair of gray levels which are a distance apart in a given 
direction:  

Vl, (i,j) = |{((r,s),(t,v)): I(r,s) = i, I(t,v) = j}| 

where i, j = 0, ..., N1; N – number of gray levels; l, – distance and direction angle; , 

I(x,y) – image pixel at position (x,y); (t,v) = (r + l cos , s + l sin ). Then a symmetrical 

matrix Vl, is computed by adding Vl, with its transpose divided by 2. After 

normalization of Vl, with a total number of pixels in the image: 
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resulting matrix P  reveals certain properties about the spatial distribution of the gray 
levels in the image. On the base of it several features can be calculated. The features 
used in experiments were following: 
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3.3 Measures of classification quality  

For the confusion matrix A =[ aij ], where aij is a number of sample pixels from the jth 
class that have been classified as belonging to the ith class, the following measures have 

been proposed (Cohen, 1960; Cohen, 1968; Hubert-Moy et al., 2001): 

 user’s accuracy of class i: ui = aii / ari, where ari = j aij (sum of ith row entries) 

 producers accuracy of class i: pi = aii / aci, where aci = j aji (sum of ith column 

entries); 

 overall accuracy of the method: d = aii / at, where at is the total number of pixels; 

 Kappa coefficient:  = (Po  Pe)/(1 Pe), where Po = i aii / at , Pe = aii / a t
 2
; 

 averaged error: uDW = 1/K i i, where i = 1 ui (if ari > 0) or i = 0 (if ari = 0) and 
K - number of classes. 

 

4 IMAGE PROCESSING RESULTS 

The methods proposed were tested for color aerial photographs, taken with 1m 
resolution. Training patterns were created on the base of original and reference images 
of size 2500x2500 pixels each. The images used for testing pattern creation were of size 
1000x2500 pixels.  
There were two kinds of processing performed (see Fig. 1):  

 classifying on the base of the set of color pixels defined by the position of a mask 
moving over original photographs,  



 classifying on the base of a single pixel color supported by texture features 
computed from GLCM in the region covered by the mask. 

In both cases a position of the mask’s center was a position of the resulting pixel. 
 
For the first type of processing the following masks were used: 7x7, 15x15, 25x25. In 
this approach the neural network was feed with a data which were the pixels color 
intensities defined by the placement of the moving window. Thus for a mask of the size 
7x7 and three color channels (RGB) there were 3*7*7 input values. 
 
For the second type of processing the masks used were of size 30x30. GLCM in this case 
was computed after transforming pixels colors to the gray scale with 32 levels. The co-

occurrence was search in three directions: 45, 90, 135, 180, in the distance of 1 pixel. 
Such texture features as: AMS, energy, entropy, contrast, homogenity, dissimilarity 
were computed and averaged. This resulted with 6 values which were treated as 
additional inputs to the neural networks. Together with 3 values corresponding to the 
colors of pixel from an original image there were 9 input values in total provided to the 
neural network.  
 

a) b) 

 

 
Fig. 1. The use of artificial neural networks for high-resolution raster image processing 
a) processing with a mask moving over color image (color channels are processed in 
parallel, thus in one position for a mask of size 7x7 there are 3*7*7 corresponding 
normalized values which are treated as an input to the neural network) 
b) processing using colors of a single pixel supported with a texture features computed 
on the base of the corresponding gray image (texture features are computed within an 
area covered by the mask moving over gray image) 
 

The test with image processing were performed for the following classes: Trees, 
Buildings, Forests, Fields. The results of image processing are shown in the Fig.2 (for 
the training process) and Fig.3 (for the testing process). In these figures only parts of 
images processed are shown. Each part in Fig.2 is a square with 512x512 pixels in size 
and (what in the field was a square with a side width equals 512m). Each part in Fig.2 is 
a square with 500x500 pixels in size and (what in the field was a square with a side 
width equals 500m). To distinguish reference images from images representing results 
of classification former ones are painted in reverse.  
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Fig. 2. Training data (raster images with resolution of 1m) and image processing results. 
Parts of images shown are of size 512x512 pixels 
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Fig. 3. Testing data (raster images with resolution of 1m) and image processing results. 
Parts of images shown are of size 500x500 pixels 
 



Table 1: Numerical evaluations of results (numbers representing quality measures are 
computed for the whole images) 

Type Mask Quality measures for the examples of Testing Set 

 u1 u2 p1 p2 d uDW 

Forest 7x7 0.857 0.997 0.810 0.635 0.999 0.857 0.192 

15x15 0.926 0.995 0.894 0.815 0.997 0.926 0.111 
25x25 0.939 0.995 0.912 0.849 0.997 0.939 0.093 

Fields 7x7 0.898 0.788 0.924 0.701 0.949 0.898 0.288 

15x15 0.888 0.759 0.919 0.690 0.941 0.888 0.322 
25x25 0.877 0.717 0.918 0.691 0.926 0.877 0.366 

Trees 7x7 0.914 0.348 0.941 0.218 0.968 0.915 0.710 
15x15 0.926 0.441 0.937 0.139 0.986 0.926 0.622 
25x25 0.920 0.418 0.946 0.288 0.969 0.920 0.636 

Buildings 7x7 0.975 0.806 0.977 0.325 0.997 0.975 0.217 
15x15 0.976 0.783 0.979 0.392 0.996 0.976 0.237 
25x25 0.977 0.753 0.982 0.461 0.995 0.977 0.265 

 

5 CONCLUSIONS 

Various architectures of feed-forward neural networks have been experimented with. 
Along with RGB intensities, including a pixel’s surrounding neighborhood (mask), 
textural features have been used as inputs for classification. Visual evaluation was used 
to judge the results, as well as more objective statistical classification error measures. 
The results from these experiments were good or excellent for some types of spatial 
features and just satisfactory for some other features.  The visual results can be 
examined in Figure 3, and the statistical quality measures are computed and collected in 
Table1.  For example, the kappa coefficient comes out best for the Buildings class.  
 
As can be expected, different neural network configurations and processing parameters 
(mask size), are required to achieve optimal results for various kinds of spatial features.  
However, for very large mask sizes computation was not reasonable due to the 
processing time. 
 
The addition of texture parameters were expected to enhance processing and feature 
recognition.  This enhancement was realized in some experiments for some features, but 
for some other features, there was degradation in their recognition.  For example, 
buildings in figure 2 came out better without GLCM (texture) with most mask sizes.  
Trees and fields, however, benefit from the consideration of textures.  On the other 
hand, it is unclear which mask size should be compared to GLCM results, which took 
into account only single-pixel RGB data, and a 32x32 texture field. 
 
We consider the results presented highly promising, although these experiments should 
be treated as only preliminary, and more work is needed to further explore the 
problem.  Some areas which require more work are: 

 comparing our results to those obtained by traditional approaches, eg. manual, 
simple spectral analysis, filtering, etc.  

 development of guidelines for (semi-)automatic neural network configuration and 
training for a specific processing task  

 image preprocessing to account for: differences in image resolution, spectral/color 
balance characteristics of the imaging system, light quality, etc. 
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