Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Geodetic and Geodynamic Programmes of the CEI (9; Symposium; 25-30.04.2005; Vienna, Austria)
Języki publikacji
Abstrakty
A new method based on support vector regression (SVR) bas been developed for network levelling. Employing zero insensitive margin and first order polynomial kemel, the general form of SVR bas been reduced to a kernel ridge regressor, which is a linear function approximator. Then this function approximation problem can be transformed into an adjustment problem, simply using proper recasting of the variabIes. Only one part of the measured values (training equations) is considered in the adjustment, the other part of them (test equations) is used to compute the risk of the data generalization. Then the quality of the estimation can be measured by computing the performance index of the levelling, a value which is a trade off between adjustment quality (residual of the test equations) and the adjustment risk (the ratio of the residual of the test equations and that of the training equations). This performance index can be optimized with the regularization term of the ridge regressor. The algorithm was implemented in Mathematica 5.1 and demonstrated by numerical example.
Czasopismo
Rocznik
Tom
Strony
263--276
Opis fizyczny
Bibliogr. 7 poz., rys., wykr.
Twórcy
autor
- Department of Geodesy and Surveying, Research Group for HAS-BUTE Physical Geodesy and Geodynamics, Budapest University of Technology and Economics, H-1521 Budapest, Müegyetem rkp 3
autor
- Department of Photogrammetry and Geoinformatics, Budapest University of Technology and Economics, H-1521 Budapest, Müegyetem rkp 3
autor
- Department of Photogrammetry and Geoinformatics, Budapest University of Technology and Economics, H-1521 Budapest, Müegyetem rkp 3
autor
- Department of Structural Mechanics, Research Group for HAS-BUTE Computational Structural Mechanics, Budapest University of Technology and Economics, H-1521 Budapest, Müegyetem rkp 3
Bibliografia
- Carosio A. (1996): Fehlertheorie... ETH Zürich, Dep. Geodätische Wissenschaften.
- Cristianini N., Shawe-Taylor J. (2003): An Introduction to Support Vector Machines and other kernel-based learning methods, Cambridge University Press.
- Jianjun Z. (1996): Robustness and robust estimate, Journal of Geodesy, pp. 586-590.
- Mitchell T. (1997): Machine Learning, McGraw-Hill.
- Schölkopf B., Smola A. J., Müller K. (1999): Kernel principal... In Schölkopf B., et all. Ed. Adv. in Kernel Methods-Support Vector Learning, pp. 327-352, MIT Press.
- Wicki F. (1991): Zuverlässigkeitstheorie, Beurteilungskriterien... ETH Zurich, Institute für Geodäsie und Photogrammetrie, Bericht Nr. 176.
- Wicki F. (1999): Robuste Schätzverfahren... ETH Zürich, Institute für Geodäsie und Photogrammetrie, Dissertation ETH Nr. 12894.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA6-0023-0018