PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pompujące własności powierzchni - pompy geterowe

Identyfikatory
Warianty tytułu
Konferencja
VII Krajowa Konferencja Techniki Próżni (7; 18-21.09.2005; Cedzyna, Polska)
Języki publikacji
PL
Abstrakty
EN
Most of production processes for articles of the so-called hi-tech class need employing ultrahigh vacuum. At present the degree of miniaturization of electronic circuits reaches such a level that single transistors should be treated in size as nanoscale devices. Accordingly quite esential is to ensure thedeterminate cleannes of vacuum condotions in the course of the production process since even a small admixture originating from residual gases can introduce fault of the obtained device. Apart from the conventional techniques of ultrahigh vacuum generation (turbomolecular pumps, cryotechnique), helpful in this field are becoming the pumps with the active pumping surface, or familiar getters. Action of this pumps consists in adsorption of particles of active gases and consequently, formation of stable compounds on their surfaces as a result of chemical reactions.We can distinguish here evaporable getters with the developed surface obtained by evaporation of a proper material (barium and titanium most of all) as well as the so-called non-evaporable getters (NEG) which are fabricated by fixing a powder of the getter material (usually compounds based on zirconium or titanium as well as other IVB elements of the periodic system) to an adequate substrate by sintering, pressing or cathaphoresis. Getters of this sort usually are activated by heating them to a sufficiently high temperature. In this paper discussed are the pumping mechanism and primary properties of getters that determine their pumping power for selected gases (i.e. the pumping rate, the pump capacity and their regeneration ability). Presented are als some of the wide applications of getters in industry (tubes, displays, monitors of different types, thermal insulations and screens, infrared detectors, photomultipliers etc.) in electronics (fabrication of thin layer systems, optoelectronics) as well as in research work (elementary particle accelerators and laboratory ultrahigh vacuum systems).
Rocznik
Tom
Strony
33--40
Opis fizyczny
Bibliogr. 20 poz., wykr., tab.
Twórcy
autor
  • Instytut Fizyki Doświadczalnej Uniwersytetu Wrocławskiego, 50-204 Wrocław, pl. Maksa Borna 9
autor
  • Instytut Fizyki Doświadczalnej Uniwersytetu Wrocławskiego, 50-204 Wrocław, pl. Maksa Borna 9
Bibliografia
  • [1] G. Lewin, Fundamentals of Vacuum Science and Technology, McGraw-Hill Book Company (1965).
  • [2] P.A. Redhead, J.P. Hobson, E.V. Kornelsen, The Physical basis of Ultrahigh Vacuum, American Institute of Physics, New York (1993).
  • [3] K. Diels and Jaeckel, R.: Leybold, Vacuum Handbook, Pergamon Press (1966).
  • [4] C. Benvenuti, P. Chiggiato, F. Cicoira and Y. L'Aminot, J. Vac. Sci. Technol. vol. A16, s. 148-154, (1998).
  • [5] M. Kiskinova, G. Bliznakov, and L. Surnev, Surf. Sci. vol. 94, s. 169-178 (1980).
  • [6] A. Zangwill, Physics at surfaces, Cambridge University Press (1988).
  • [7] G.D. Berkheimer, R.E. Buxbaum, J. Vac. Sci. Technol. vol. A3, s. 412-416 (1985).
  • [8] Y. Fukai, The Metal-Hydrogen System: Basic Bulk Properties, Springer-Verlag, Berlin Heidelberg (1993).
  • [9] C. Benvenuti, F. Francia, J. Vac. Sci. Technol. vol. A6, s. 2528-2534 (1988).
  • [10] C. Benvenuti, J.M. Cazeneuvea, P. Chiggiatoa, F. Cicoira, A. Escudeiro Santanaa, V. Johaneka, V. Ruzinov, J. Fraxedas, Vacuum vol. 53, s. 219-225 (1999).
  • [11] C. Benvenuti, P. Chiggiato, A. Mongelluzzo, A. Prodromides, V. Ruzinov, C. Scheuerlin, M. Taborelli, F. Le'vy, J. Vac. Sci. Technol. Vol. A19, s. 2925-2930 (2001).
  • [12] C. Benvenuti, P. Chiggiato, P. Costa Pinto, A. Escudeiro Santana, T. Hedley, A. Mongelluzzo, V. Ruzinov, I. Wevers, Vacuum vol. 60, s. 57-65 (2001).
  • [13] C. Benvenuti, P. Chiggiato, P. Costa Pinto, A. Prodromides and V. Ruzinov, Vacuum vol. 71, s. 307-315 (2003).
  • [14] A.E. Prodromides, C. Scheuerlein and M. Taborelli, Vacuum vol. 60, s. 35-41 (2001).
  • [15] R.J. Behm, K. Christmann, G. Ertl, Surf. Sci. vol. 99, s. 320-340 (1980).
  • [16] W. Lisowski, R. Duś, Appl. Surf. Sci. vol. 72, s. 149-156 (1993).
  • [17] G. Alefeld, J. Völkl, Hydrogen in metals, Springer, Berlin (1978).
  • [18] L. Surnev, G. Bliznakov, K. Kiskinova, Surf. Sci. vol. 140, s. 249-260 (1984).
  • [19] P. Légaré, L. Hilaire, G. Maire, G. Krill, A. Amamou, Surf. Sci. vol. 107, s. 533-546 (1981).
  • [20] A. Noordermeer, G.A. Kok, B.E. Nieuwenhuys, Surf. Sci. vol. 165, s. 375-392 (1986).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA6-0020-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.