PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties of certain classes of analytic functions defined by Srivastava-Attiya operator

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we introduce the class K(s,b,beta,apha) of analytic functions defined by the Srivastava-Attiya convolution operator Js,b(f) involving the Hurwitz-Lerch Zeta function. We derive few subordination results for the functions in the class K(s,b,beta,alpha) and discuss the interesting applications of subordination results with the help of convex functions. Several other properties like coefficient inequalities growth and distortion theorems, extreme points, integral mean inequalities, partial sums and quasi-Hadamard product are investigated for the class K(s,b,beta,alpha). The authors also obtain Fekete-Szego inequality for normalized analytic functions f(z) defined on the open unit disc for which [....] lies in a region starlike with respect to 1 and is symmetric with respect to the real axis. Applications of our main result involving the Owa-Srivastava operator of fractional calculus are discussed. Finally as one of the applications of our result, we derive the Fekete-Szego inequality for a class of normalized analytic functions, defined using the Hadamard product and the Owa-Srivastava operator.
Wydawca
Rocznik
Strony
55--79
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
autor
Bibliografia
  • [1] A. A. Attiya, N. E. Cho, M. A. Kutbi, Subordination properties for certain analytic functions, Internat. J. Math. Math. Sci. Vol. (2008), Article ID 63825 1:8 pp.
  • [2] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. 17 (1915), 12-22.
  • [3] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.
  • [4] J. Choi, H. M. Srivastava, Certain families of series associated with the Hurwitz-Lerch Zeta function, Appl. Math. Comput. 170 (2005), 399-409.
  • [5] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenchaften, 259 (1983), Springer-Verlag (New York, Berlin, Heidelberg, Tokyo).
  • [6] C. Ferreira, J. L. López, Asymptotic expansion of the Hurwitz-Lerch Zeta function, J. Math. Anal. Appl. 298 (2004), 210-224.
  • [7] M. Garg, K. Jain, H. M. Srivastava, Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch Zeta functions, Integral Transform Special Functions 17 (2006), 803-815.
  • [8] I. B. Jung, Y.C. Kim, H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), 138-147.
  • [9] S. M. Khairnar, Meena More, A class of analytic functions defined by Hurwitz-Lerch Zeta function, Internat. J. Math. Comput. 1(8) (2008), 106-123.
  • [10] S. Latha, Coefficient inequalities for certain class of Ruscheweyh type analytic functions, J. Inequal. Pure Appl. Math. 9(2) (2008), Art. 52: 5pp.
  • [11] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1969), 755-758.
  • [12] S. D. Lin, H. M. Srivastava, Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput. 154 (2004), 725-733.
  • [13] S. D. Lin, H. M. Srivastava, P. Y. Wang, Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions, Integral Transforms Special Functions 17 (2006), 817-827.
  • [14] J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. 23 (1925), 481-519.
  • [15] Q. M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler’ polynomials, J. Math. Anal. Appl. 308 (2005), 290-302.
  • [16] S. Owa, The quasi-Hadamard product of certain analytic functions, Current topics in analytic function theory (H. M. Srivasrtava and S. Owa, Editors), World Sci. Publ. Comp., Singapore, New Jersey, London and Hong Kong: 234-251.
  • [17] S. Owa, On the distortion theorems, I, Kyungpook Math. J. 18 (1978), 53-59.
  • [18] S. Owa, H. M. Srivastava, Univalent and starlike functions generalized by hypergeometric functions, Canad. J. Math. 39 (1987), 1057-1077.
  • [19] D. Raducanu, H. M. Srivastava, A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function, Integral Transforms Special Functions 18(12) (2007), 933-943.
  • [20] R. K. Raina, D. Bansal, Some properties of a new class of anaytic functions defined in terms of a Hadamard product, J. Inequal. Pure Appl. Math. 9(1) 2008, Art 22:9 pp.
  • [21] H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transforms Special Functions 18 (2007), 207-216.
  • [22] H. S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc. 12 (1961), 689-693.
  • [23] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, in: Z. Li, F. Ren, L. Yang and S. Zhang (Eds). Proceedings of the Conference on Complex Analysis (Cambridge, Massachusetts: Internation al Press): 157-169.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0027-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.