PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On a boundary value problem for a third differential inclusion

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider a boundary value problem for third order nonconvex differential inclusion and we obtain some existence results by using the set-valued contraction principle.
Wydawca
Rocznik
Strony
723--730
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
  • Faculty of Mathematics and Informatics University of Bucharest Academiei 14 010014 Bucharest, Romania, acernea@fmi.unibuc.ro
Bibliografia
  • [1] G. Bartuzel, A. Fryszkowski, Filippov lemma for certain differential inclusion of third order, Demonstratio Math. 41 (2008), 337-352.
  • [2] A. Bressan, A. Cellina, A. Fryskowski, A class of absolute retracts in spaces of integrable functions, Proc. Amer. Math. Soc., 112 (1991), 413-418.
  • [3] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Springer, Berlin, 1977.
  • [4] A. Cernea, Existence for nonconvex integral inclusions via fixed points, Arch. Math. (Brno) 39 (2003), 293-298.
  • [5] A. Cernea, An existence theorem for some nonconvex hyperbolic differential inclusions, Mathematica (Cluj) 45 (68) (2003), 121-126.
  • [6] A. Cernea, An existence result for nonlinear integrodifferential inclusions, Comm. Appl. Nonlinear Anal. 14 (2007), 17-24.
  • [7] A. Cernea, On the existence of solutions for a higher order differential inclusion without convexity, Electron. J. Qual. Theory Differential Equations 8 (2007), 1-8.
  • [8] A. Cernea, On the existence of mild solutions of a nonconvex evolution inclusion, Math. Commun. 13 (2008), 107-114.
  • [9] A. Cernea, An existence result for a Fredholm-type integral inclusion, Fixed Point Theory 9 (2008), 441-447.
  • [10] H. Covitz, S. B. Nadler jr., Multivalued contraction mapping in generalized metric spaces, Israel J. Math. 8 (1970), 5-11.
  • [11] Z. Kannai, P. Tallos, Stability of solution sets of differential inclusions, Acta Sci. Math. (Szeged) 61 (1995), 197-207.
  • [12] T. C. Lim, On fixed point stability for set valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110 (1985), 436-441.
  • [13] P. Talllos, A Filippov-Gronwall type inequality in infinite dimensional space, Pure Math. Appl. 5 (1994), 355-362.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0027-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.