Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let R be a prime ring with extended centroid C and characteristic different from 2, d a nonzero derivation of R, f(x1,..., xn) a nonzero multilinear polynomial over C such that [d2(f(x1,... , xn)),d(f(x1,... ,xn))]k = 0 for all x1,... ,xn in some nonzero right ideal [...] of R, where k is a fixed positive integer. If d(p) p [..]0, then pC = eRC for some idempotent e in the socle of RC and /(x1,..., xn) is central-valued on eRCe.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
467--478
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
- Department of Mathematics Belda College Belda Paschim Medinipur-721424 (W.B), India, basu_dhara@yahoo.com
Bibliografia
- [1] K. I. Beidar, Rings with generalized identities, Moscow Univ. Math. Bull. 33 (4) (1978), 53-58.
- [2] H. E. Bell, Q. Deng, On derivations and commutativity in semiprime rings, Comm. Algebra 23 (10) (1995), 3705-3713.
- [3] J. Bergen, I. N. Herstein, J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra 71 (1981), 259-267.
- [4] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385-394.
- [5] C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (3) (1988), 723-728.
- [6] C. L. Chuang, T. K. Lee, Rings with annihilator conditions on multilinear polynomials, Chinese J. Math. 24 (2) (1996), 177-185.
- [7] T. S. Erickson, W. S. Martindale III, J. M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), 49-63.
- [8] B. Felzenszwalb, On a result of Levitzki, Canad. Math. Bull. 21 (1978), 241-242.
- [9] I. N. Herstein, A condition that a derivation be inner, Rend. Circ. Mat. Palermo (2) 37 (1988), 5-7.
- [10] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.
- [11] V. K. Kharchenko, Differential identity of prime rings, Algebra and Logic. 17 (1978), 155-168.
- [12] C. Lanski, An engel condition with derivation for left ideals, Proc. Amer. Math. Soc. 125 (1997), 339-345.
- [13] C. Lanski, An engel condition with derivation, Proc. Amer. Math. Soc. 118(3) (1993), 731-734.
- [14] C. Lanski, Differential identities, Lie ideals, and Posner’s theorems, Pacific J. Math. 56 (1986), 231-246.
- [15] P. H. Lee, T. K. Lee, Derivations with Engel conditions on multilinear polynomials, Proc. Amer. Math. Soc. 124 (9) (1996), 2625-2629.
- [16] P. H. Lee, T. K. Lee, Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sinica 11 (1983), 75-80.
- [17] T. K. Lee, Derivations with Engel conditions on polynomials, Algebra Colloq. 5 (1) (1998), 13-24.
- [18] T. K. Lee, Power reduction property for generalized identities of one sided ideals, Algebra Colloq. 3 (1996), 19-24.
- [19] T. K. Lee, Left annihilators characterized by GPIs, Trans. Amer. Math. Soc. 347 (1995), 3159-3165.
- [20] T. K. Lee, Semiprime rings with hypercentral derivations, Canad. Math. Bull. 38 (1995), 445-449.
- [21] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20(1) (1992), 27-38.
- [22] U. Leron, Nil and power central valued polynomials in rings, Trans. Amer. Math. Soc. 202 (1975), 97-103.
- [23] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
- [24] E. C. Posner, Derivation in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
- [25] J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 (1990), 47-52.
- [26] T. L. Wong, Derivations with power central values on multilinear polynomials, Algebra Colloq. 3 (4) (1996), 369-378.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0025-0002