PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mikromieszanie płynów różniących się lepkością w układach z przepływem laminarnym

Autorzy
Identyfikatory
Warianty tytułu
EN
Micromixing of fluids differing in viscosity in laminar flow systems
Języki publikacji
PL
Abstrakty
PL
Praca poświęcona jest mieszaniu na skalę molekularną (mikromieszaniu) płynów w warunkach przepływu laminarnego, a w szczególności wpływowi różnicy lepkości mieszanych płynów na przebieg mikromieszania oraz szybkich i bardzo szybkich homogenicznych reakcji chemicznych. W ramach pracy przedstawiono elementarne mechanizmy mikromieszania oraz dokonano krytycznego przeglądu dostępnych w literaturze metod modelowania i symulacji procesów mikmmieszania w przepływie laminarnym. Przedyskutowano również metody pozwalające ściśle określić wpływ różnicy lepkości mieszanych płynów na przebieg deformacji elementów płynu i lokalne pole przepływu. Następnie na tej podstawie sformułowano własny model matematyczny mikromieszania, opisujący mikromieszanie w ujęciu Lagrange'a, jako proces dyfuzyjnego przyspieszonego przez konwekcję transportu masy zachodzącego w elementach płynu w trzech wymiarach przestrzennych. Dzięki zastosowaniu wielowymiarowego opisu mikromieszania model ten pozwala, w odróżnieniu od wcześniejszych modeli, uchwycić bezpośrednio wpływ różnicy lepkości mieszanych płynów na przebieg tych wszystkich procesów, które są częściowo lub całkowicie kontrolowane przez mieszanie na poziomie molekularnym. Poprawność przestrzennego modelu mikromieszania została potwierdzona przez porównanie wyników modelowania z wynikami badań doświadczalnych, przeprowadzonych przy użyciu metody reaktywnego znacznika (układ konkurencyjnych i równoległych reakcji chemicznych) w dwóch różnych układach: wytłaczarce dwuśrubowej o działaniu ciągłym i reaktorze zbiornikowym z mieszadłem ślimakowym i dyfuzorem o działaniu półokresowym. W ten sposób osiągnięto podstawowy cel badawczy. Pozostałe wyniki tej pracy to: uściślenie definicji efektywności energetycznej mieszania, wyznaczenie skali i ram czasowych wpływu różnicy lepkości mieszanych płynów na szybkość tworzenia nowej powierzchni kontaktu oraz określenie warunków bezpiecznego stosowania jednowymiarowych modeli mikromieszania.
EN
This paper deals with mixing on the molecular scale (micromixing) of fluids in ihc lammar flow regime and especially with the influence of inequalities in viscosity of the mixed fluids on the course of micromixing with fast and very fast homogenous chemical reactions. The elementary mechanism of micromixing and a critical review of methods of modeling and simulation of micromixing processes in the laminar flow available in literature have been presented in this work. Theoretical methods have also been discussed, allowing to determine. precisely the effects of difference in viscosity of the mixed fluids on the course of deformation and local velocity field. A micromixing model has been created describing niieromixmg in the Lagrangian frame of reference as diffusive transport of mass accelerated by convection in fluid elements in three space dimensions. Contrary to earlier models, this multidimensional model allows to account directly for the effect of viscosity difference on the course of all these processes, which are partly or fully controlled by mixing on the molecular scale. Accuracy of the multidimensional model was positively verified by comparing its predictions with results of experiments with a reactive tracer method (two competitive-parallel chemical reactions.) conducted in two different systems: a twin screw extruder working as an on-line mixer and a lank reactor, equipped with a screw agitator and a draft tube, working in a semi-batch mode. In this way, the main aim of the study was accomplished. Other results of this study are as follows; refinement of the idea of energetic efficiency of mixing, determination of magnitude and time scale of influence of differences in viscosity of the mixed liquids on the rate of generation of new intermaterial surface area and idcntification of conditions of safe application of the classical one-dimensional models of micromixing.
Rocznik
Strony
3--164
Opis fizyczny
Bibliogr. 154 poz., rys., tab., wykr.
Twórcy
autor
  • Zakład Mechaniki Technicznej i Dynamiki Procesowej, Wydział Inżynierii Chemicznej i Procesowej Politechniki Warszawskiej
Bibliografia
  • 1. Nagata S., Mixing. Principles i applications, Kodansha Ltd., Tokio. John Wiley & Sons, New York, 1973.
  • 2. Peńa C., Galindo E., Díaz M., Effectiveness factor in biological external convection: study in high viscosity systems, J. Biotechnol., 2002, 95, 1-12.
  • 3. Ranz W.E., Mixing and Fluid Disspersion of Viscous Liquids, AIChE J., 1982, 28, 91-96.
  • 4. Meijer H.E.H, Janssen J.M.H., Mixing of Immiscible Liquids, Mixing and Compounding of Polymers - Theory and Practice (eds Manas-Zloczower L, Tadmor Z.), Hanser Publishers, Munich. 1994, 85-131.
  • 5. Bałdyga J., Bourne J.R., Principles and Micromixing, Encyclopedia of Fluid Mechanics (ed. Cheremisinoff N.P.), Gulf Publishing Company, Houston, Texas, 1986, I, 147-201.
  • 6. Bałdyga J., Boume J.R., Turbulent mixing and chemical reactions, John Wiley and Sons, Chichester, 1999.
  • 7. Mohr W.D., Mixing and Disspersing, Processing of Thermoplastic Materials (ed. Bernhardt E.C.). Reinhold Publishing Company. New York, 1959, 117-152.
  • 8. R. Ranz W.E., Application of a Stretch Model to Mixing, Diffusion, and Reaction in Laminar and Turbulent Flow, AIChE J., 1979, 25, 41-47.
  • 9. Bałdyga J., Rożeń A., Mostert F.,: A model of laminar micromixing with application to parallel chemical reactions, Chem. Eng. J., 1998, 69, 7-20.
  • 10. Ottino J.M., Ranz W.E., Macosko C.W., A lamellar model for analysis of liquid-liquid mixing, Chem. Eng. Sci., 1979, 34, 877-890.
  • 11. Muzzio F.J., Ottino J.M., Diffusion and reaction in a lamellar system: Self-similarity with finite rates of reaction, Physical Review A, 1990, 42, 5873-5884.
  • 12. Bigg D., Middleman S., Laminar mixing of a Pair of Fluids in a Rectangular Cavity, Ind. Eng. Chem. Fundam., 1974, 13, 184-190.
  • 13. Rożeń A.. Bałdyga J., Influence of viscosity difference on the instability of the core-annular flow, Task Quarterly, 2003, 7, 425-438.
  • 14. Todd D.B., Mixing of Highly Viscous Fluids, Polymers, and Pastes, Handbook of Industrial Mixing. Science and Practice (eds Paul E.L., Atiemo-Obeng V.A., Kresta S.M.), John Wiley & Sons. Inc., Hoboken, 2004, 987-1024.
  • 15. Rożeń A., Bałdyga J., Instability of Couette flow of two liquids differing in viscosity, Inż. Chem. Proc., 2004, 25, 439-454.
  • 16. Bałdyga J., Bourne J.R., Interactions between mixing on various scales in stirred tank reactors, Chem. Eng. Sci., 1992, 8, 1839-1848.
  • 17. McKelvey J.M., Polymer processing. John Wiley & Sons, Inc., New York, 1962,
  • 18. Danckwerts P.V., The Definition and Measurement of Some Characteristics of Mixtures, Appl. Sci. Res. A, 1952, 3, 279-296.
  • 19. Danckwerts P.V., The effect of incomplete mixing on homogeneous reactions. Chem. Eng. Sci., 1958, 8, 93-102.
  • 20. Nauman E.B., Buffham B.A., Mixing in Continuous Flow Systems, John Wiley & Sons, Inc., New York, 1983.
  • 21. Toor H.L., Intensity of Segregation Revisited, AIChE J, 1997, 43, 263-264.
  • 22. Hill J.C., Homogenous turbulent mixing with chemical reaction, Ann. Rev. Fluid Mech., 1976, 8, 135-199.
  • 23. Danckwerts P.V., Measurement of molecular homogeneity in a mixture, Chem. Eng. Sci., 1957, 7, 116-117.
  • 24. Tucker III C.L., Sample variance measurement of mixing, Chem. Eng. Sci., 1981, 36, 1829-1839.
  • 25. Spencer R.S., Wiley R.M., The mixing of very viscous liquids, J. Colloid Sci., 1951, 6, 133-145.
  • 26. Mohr W.D., Saxton R.L., Jepson C.H., Mixing in Laminar-Flow Systems, Ind. Eng. Chem., 1957, 49, 1855-1856.
  • 27. Nadav N., Tadmor Z., Quantitative characterization of extruded film texture, Chem. Eng. Sci., 1973, 28, 2115-2126.
  • 28. Erwin L., Theory of Mixing Sections in Single Screw Extruders, Polym. Eng. Sci., 1978, 18, 572-576.
  • 29. Erwin L., Theory of Laminar Mixing, Polym. Eng. Sci., 1978, 18, 1044-1048.
  • 30. Aris R., Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Prentice-Hall Inc., Englewood Cliffs, 1962.
  • 31. Heller J.P., An Unmixing Demonstration, Am. J. Phys., 1960, 28, 348-353.
  • 32. Mitsuishi N., Nakano K., Ide Y., Mixing and reaction in highly viscous liquid, J. Chem. Eng. Japan., 1972, 5, 407-412.
  • 33. Bilby B.A., Eshelby J.D., Kundu A.K., The Change of Shape of a Viscous Ellipsoidal Region Embedded in a Slowly Deforming Matrix Having a Different Viscosity, Tectonophysics, 1975, 28, 265-274.
  • 34. Bilby B.A., Kolbuszewski M.L., The finite deformation of an inhomegeneity in two-dimensional slow viscous incompressible flow, Proc. R. Soc. Lond. A, 1977, 355, 335-353.
  • 35. Howard I.C., Brierley P., On the finite deformation of an inhomogeneity in a viscous liquid, Int. J. Eng. Sci., 1976, 14, 1151-1159.
  • 36. Eshelby J.D., The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond., 1957, 241, 376-396.
  • 37. Kalb B., Cox R.O., Manley R.St.J., Hydrodynamically Induced Formation of Cellulose Fibers, J. Colloid Interface Sci., 1981, 82, 286-297.
  • 38. Murakami Y., Fujimoto K., Uotani S., The homogenizing process in high viscosity materials having different viscosities, J. Chem. Eng. Japan, 1972, 5, 85-86.
  • 39. Bałdyga J., Rożen A., Investigation of micromixing in very viscous liquids, Proceedings of 8th European Conference on Mixing, Cambridge, England, 1994, 267-274.
  • 40. Rożeń A., Investigation of laminar micromixing of liquids differing in viscosity, Inż. Chem. Proc., 2005, 26, 649-670.
  • 41. da Silva M.A.J., Rielly C.D., Baker M.R., Mixing miscible liquids with a large viscosity difference in constrained channel flow, Proceedings of 9th European Conference on Mixing, Paris, France, Recent Progres en Genie des Procedes, 1997, 11(51), 59-66.
  • 42. Hickox C.E., Instability due to Viscosity and Density Stratification in Axisymmetric Pipe Flow, Phys. Fluids, 1971, 14, 251-262.
  • 43. Joseph D.D., Renardy Y.Y., Fundamentals of two-fluid dynamics, Springer-Verlag, New York. 1993.
  • 44. Burch H.E., Scott C.E., Effect of viscosity ratio on structure evolution in miscible polymer blends, Polymer, 2001, 42, 7313-7325.
  • 45. Baim W., Bigio D., The effect of viscosity ratio and volume fraction on the distributive mixing of two miscible fluids in the NITSE, SPE Antec, 1994, 40, 266-269.
  • 46. Ventresca A.L., Cao Q., Prasad A.K., The influence of Viscosity Ratio on Mixing Effectiveness in a Two-fluid Laminar Motionless Mixer, Can. J. Chem. Eng., 2002, 80, 614-620.
  • 47. Smith J.M., Schoenmakers A.W., Blending of liquids of differing viscosity. Chem. Eng. Res. Des., 1988, 66, 16-21.
  • 48. Bouwmans I., Bakker A., van den Akker H.E.A., Blending liquids of differing viscosities and densities in stirred vessels. Trans IChemE, 1997, 75A, 777-783.
  • 49. Wetzel E.D., Tucker III C.L., Droplet deformation in dispersions with unequal viscosities and zero interfacial tension, J. Fluid Mech., 2001, 426, 199-228.
  • 50. Jackson N.E., Tucker III C.E., A model for large deformation of an ellipsoidal droplet with interfacial tension, J. Rheol., 2003, 47, 659-682.
  • 51. Maffettone P.E., Minale M., Equation of change of ellipsoidal drops in viscous flow, J. Non-Newtonian Fluid Mech., 1998, 78, 227-241.
  • 52. Almusallam A.S., Larson R.G., Solomon M.J., A constitutive model for the prediction of ellipsoidal droplet shapes and stresses in immiscible blends, J. Rheol., 2000, 44, 1055-1083.
  • 53. Wu Y., Zinchenko A.Z., Davis R.H., General Ellipsoidal Model for Deformable Drops in Viscous Flows, Ind. Eng. Chem. Res., 2002, 41, 6270-6278.
  • 54. Taylor G.I., The formation of emulsions in definable fields of flow, Proc. Roy. Soc. Lond. A. 1934, 146, 501-523.
  • 55. Tomotika S., On the Instability of a Cylindrical Thread of a Viscous Liquid surrounded by Another Viscous Fluid, Proc. Roy. Soc. Lond. A, 1935, 150, 322-337.
  • 56. Tomotika S.. Breaking of a Drop of Viscous Liquid Immersed in Another Viscous Fluid Which is Extending at a Uniform Rate, Proc. Roy. Soc. Lond. A, 1936, 153, 302-318.
  • 57. Grace H.P., Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems, 3rd Eng. Found. Res. Conf. Mixing, Andover, N.H., 1971, Chem. Eng. Commun., 1982, 14, 225-277.
  • 58. Bentley B.J., Leal E.G., An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows, J. Fluid Mech., 1986, 167, 241-283.
  • 59. Lindt J.T., Ghosh A.K., Fluid Mechanics of the Formation of Polymer Blends. Part I: Formation of Lamellar Structures, Polym. Eng. Sci., 1992, 32, 1802-1813.
  • 60. Scott C.E., Macosko C.W., Morphology development during the initial stages of polymer - polymer blending, Polymer, 1995, 36, 461-470.
  • 61. Tyagi S., Ghosh A.K., Morphology Development During Blending of Immiscible Polymers in Screw Extruders, Polym. Eng. Sci., 2002, 42, 1309-1321.
  • 62. Favis B.D., Chalifoux J.P., The Effect of Viscosity Ratio on the Morphology of Polypropylene/Polycarbonate Blends During Processing, Polym. Eng. Sci., 1987, 27, 1591-1600.
  • 63. Huneault M.A., Mighri F., Ko G.H., Watanabe F., Dispersion in High Viscosity Ratio Polyolefin Blends, Polym. Eng. Sci., 2001, 41, 672-683.
  • 64. Jana S.C., Sau M., Effects of viscosity ratio and composition on development of morphology in chaotic mixing of polymers, Polymer, 2004, 45, 1665-1678.
  • 65. Lin B., Sundararaj U., Frej M., Huneault M.A., Erosion and Breakup of Polymer Drops Under Simple Shear in High Viscosity Ratio Systems, Polym. Eng. Sci., 2003. 43, 891-904.
  • 66. Chen H., Sundararaj U., Nandakumar K., Modeling of Polymer Melting, Drop Deformation, and Breakup Under Shear Flow, Polym. Eng. Sci., 2004, 44, 1258-1266.
  • 67. Ottino J.M., Lamellar mixing models for structured chemical reactions and their relation-ship to statistical models; macro- and micromixing and the problem of averages, Chem. Eng. Sci., 1980, 35, 1377-1391.
  • 68. Ottino J.M., Efficiency of Mixing from Data on Fast Reactions in Multi-Jet Reactors and Stirred Tanks, AIChE J., 1981, 27, 184-192.
  • 69. Chella R., Ottino J.M., Conversion and selectivity modifications due to mixing in unpremixed reactors, Chem. Eng. Sci., 1984, 39, 551-567.
  • 70. Fields S.D., Ottino J.M., Effect of Segregation on the Course of Unpremixed Polymerizations, AIChE J., 1987, 33, 959-975.
  • 71. Kusch H.A., Ottino J.M., Shannon D.M., Analysis of Impingement Mixing-Reaction Data: Use of a Lamellar Model To Generate Fluid Mixing Information, Ind. Eng. Chem. Res., 1989, 28, 302-315.
  • 72. Sokolov I.M., Blumen A., Distribution of striation thickness in reacting lamellar systems, Phys. Rev. A, 1991, 43, 2714-2719.
  • 73. Bałdyga J., Bourne J.R., A fluid mechanical approach to turbulent mixing and chemical reaction. Part I. Inadequacies of available methods, Chem. Eng. Commun., 1984, 28, 231-241.
  • 74. Bennett C.O., Myers J.E., Momentum, heat, and mass transfer, McCraw-Hill Book Company, Inc., 1962, New York.
  • 75. Tryggvason G., Dahm W.J.A., An Integral Method for Mixing, Chemical Reactions, and Extinction in Unsteady Strained Diffusion Layers, Combustion and Flame, 1991, 83, 207-220.
  • 76. Chang C.H.H., Dahm W.J.A., Tryggvason G., Lagrangian model simulations of molecular mixing, including finite rate chemical reactions, in a temporally developing shear layer, Phys. Fluids A, 1991, 3, 1300-1311.
  • 77. Rożeń A., Bakker R.A., Bałdyga J., Application of an integral method to modelling of laminar micromixing, Chem. Eng. J., 2001, 84, 413-428.
  • 78. Eshelby J.D., The elastic field outside an ellipsoidal inclusion, Proc. R. Soc. Lond. A, 1959, 252, 561-569.
  • 79. Villermaux J., Falk L., A generalized mixing model for initial contacting of reactive fluids, Chem. Eng. Sci., 1994, 49, 5127-5140.
  • 80. Guichardon P., Falk L., Villermaux J., Extension of a chemical method for the study of micromixing process in viscous media, Chem. Eng. Sci., 1997, 52, 4649-4658.
  • 81. Bałdyga J., Turbulent mixer model with application to homogenous, instantaneous chemical reactions, Chem. Eng. Sci., 1989, 44, 1175-1182
  • 82. Rousseaux J.-M., Falk L., Muhr H., Plasari E., Micromixing Efficiency of a Novel Sliding-surface Mixing Device, AIChE J., 1999, 45, 2203-2213.
  • 83. Chakraborty S., Balakotaiach V., Low-dimensional model describing mixing effects in laminar flow tubular reactors, Chem. Eng. Sci., 2002, 57, 2545-2564.
  • 84. Chakraborty S., Balakotaiach V., A novel approach for describing mixing effects in homogeneous reactors, Chem. Eng. Sci., 2003, 58, 1053-1061.
  • 85. Adrover A., Cerbelli S., Giona M., A spectral approach to reaction/diffusion kinetics in chaotic flow, Computers and Chem. Eng., 2002, 26, 125-139.
  • 86. Giona M., Garofalo F., Cerbelli S., Adrover A., Creta F., Foundations of mixing theory for microflow devices, Proceedings of 12th European Conference on Mixing, Bologna, Italy. 27-30 June 2006, 100-101.
  • 87. Hoefsloot H.C.J., Fourcade E., van Vliet G., Bunge W., Mutsers S.M.P., Iedema P.D., The influence of mixing on molecular weight distribution during controlled polymer degradation in a static mixer reactor. Trans IChemE, 2001, 79, 921-926.
  • 88. Rożeń A., van Dierendonck L.L., Janssen L.P.B.M.: Analiza teoretyczna mikromieszania w wytłaczarce jednoślimakowej, Politechnika Warszawska, Prace Wydziału Inżynierii Chemicznej i Procesowej, 1999, XXV(1-3), 221-224.
  • 89. Avalosse Th., Crochet M.J., Finite-Element Simulation of Mixing: 2. Three-Dimensional Flow Through a Kenics Mixer, AIChE J., 1997, 43, 588-597.
  • 90. Rauline D., Tanguy P.A., Le Blévec J.-M., Bousquet J„ Numerical Investigation of Several Static Mixers, Can. J. Chem. Eng., 1998, 76, 527-535.
  • 91. Cheng H., Manas-Zloczower I., Chaotic Features of Flow in Polymer Processing Equipment - Relevance to Distributive Mixing, Int. Polym. Proc., 1997, XII, 83-91.
  • 92. de la Villéon J., Bertrand F., Tanguy P.A., Labrie R., Bousquet J., Lebouvier D., Numerical Investigation of Mixing Efficiency of Helical Ribbons, AIChE J., 1998, 44, 972-977.
  • 93. Chakravarthy V.S., Ottino J.M., Mixing of two viscous fluids in a rectangular cavity, Chem. Eng. Sci., 1996, 51, 3613-3622.
  • 94. Hoefsloot H., Willemsen S.M., Hamersma P.J., Iedema P.D., Mixing of two liquids with different rheological behaviour in a lid driven cavity, Proceedings of 10th European Conference on Mixing, Delft, The Netherlands, 2000, 109-116.
  • 95. Li J., Renardy Y., Direct simulation of unsteady axisymmetric core-annular flow with high viscosity ratio, J. Fluid Mech., 1999, 391, 123-149.
  • 96. Li J., Renardy Y.Y., Renardy M., Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method, Phys. Fluids, 2000, 12, 269-282.
  • 97. Grosfils P., Boon J.P., Viscous fingering in miscible, immiscible and reactive fluids, Int. J. Mod. Phys. B, 2003, 17, 15-20.
  • 98. Aref H., Stirring by chaotic advection, J. Fluid Mech., 1984, 143, 1-21.
  • 99. Aref H., The development of chaotic advection, Phys. Fluids, 2002, 14, 1315-1325.
  • 100. Ottino J.M., The Kinematics of Mixing: Stretching, Chaos, and Transport, Cambridge Univ. Press, Cambridge, 1989.
  • 101. Leong C.W., Ottino J.M., Experiments on mixing due to chaotic advections in a cavity, J. Fluid Mech., 1989, 209, 463-499.
  • 102. Leong C.W., Ottino J.M., Increase in Regularity by Polymer Addition during Chaotic Mixing in Two-Dimensional Flows, Phys. Rev. Lett., 1990, 64, 874-877.
  • 103. Anderson P.D., Galaktionov O.S., Peters G.W.M., van de Vosse F.N., Meijer H.E.H, Chaotic fluid mixing in non-quasi-static time-periodic cavity flows. Int. J. Heat Fluid Flow, 2000, 21, 176-185.
  • 104. Anderson P.D., Galaktionov O.S., Peters G.W.M., van de Vosse F.N., Meijer H.E.H, Mixing of non-Newtonian fluids in time periodic cavity flows, J. Non-Newtonian Fluid Mech., 2000, 93, 265-286.
  • 105. Swanson P.D., Ottino J.M., A comparative computational and experimental study of chaotic mixing of viscous fluids, 1990, 213, 227-249.
  • 106. Fan Y. Tanner R.L, Phan-Thien, A numerical study of viscoelastic effects in chaotic mixing between eccentric cylinders, J. Fluid Mech., 2000, 412, 197-225.
  • 107. Florek C.F., Tucker III, C.L., Stretching distributions in chaotic mixing of droplet dispersions with unequal viscosities, Phys. Fluids, 2005, 17, 053101.
  • 108. Jana S.C., Sau M., Effect of Waveforms on Morphology Development in Chaotic Mixing of Polymers, AIChE J., 2004, 50, 2346-2358.
  • 109. Zumbrunnen D.A., Chhibber C., Morphology development in polymer blends produced by chaotic mixing at various compositions, Polymer, 2002, 43, 3267-3277.
  • 110. Hobbs D.M., Muzzio F.J., Reynolds number effects on laminar mixing in the Kenics static mixer, Chem. Eng. J., 1998, 70, 93-104.
  • 111. Rauline D., le Blévec J.-M., Bousquet J., Tanguy P.A., A comparative assessment of the performance of the Kenics and SMX static mixers, Trans IChemE, 2000, 78, 389-395.
  • 112. le Guer Y., Schall E., A mapping tool using anisotropic unstructured meshes to study mixing in periodic flows, Chem. Eng. Sci., 2004, 59, 1459-1472.
  • 113. Boesinger C., le Guer Y., Mory M., Experimental Study of Reactive Chaotic Flows in Tubular Reactors, AIChE J., 2005, 51, 2122-2132.
  • 114. Yamagishi A., Inaba T., Yamaguchi Y., Chaotic analysis of mixing enhancement in steady laminar flows through multiple pipe bends, Int. J. Heat Mass Transfer, 2007, 50, 1238-1247.
  • 115. Lawal A., Kalyon D.M., Mechanisms of Mixing in Single and Co-Rotating Twin Screw Extruders, Polym. Eng. Sci., 1995, 35, 1325-1338.
  • 116. Alvarez M.M., Zalc J.M., Shinbrot T., Arratia P.E., Muzzio F.J., Mechanisms of Mixing and Creation of Structure in Laminar Stirred Tanks, AIChE J., 2002, 48, 2135-2147.
  • 117. Zalc J.M., Muzzio F.J., Parallel-competitive reactions in a two-dimensional chaotic flow, Chem. Eng. Sci., 1999, 54, 1053-1069.
  • 118. Szalai E.S., Kukura J., Arratia P.E., Muzzio F.J., Effect of Hydrodynamics on Reactive Mixing in Laminar Flows, AIChE J., 2003, 49, 168-179.
  • 119. Mitrinovič D.S., Pečarić J.E., Fink A.M., Classical and New Inequalities in Analysis. Kluwer Academic Publishers, Dodrecht, 1993.
  • 120. Rożeń A., Bałdyga J.: Mikromieszanie cieczy różniących się lepkością w reaktorze zbiornikowym z mieszadłem ślimakowym i dyfuzorem, Inż. Chem. Proc., 2004, 25, 1575-1581.
  • 121. Rożeń A., Bałdyga J.: Laminar micromixing of liquids of equal and unequal viscosities. The role of characteristic time scales of the process, Inż. Chem. Proc., 2006, 27, 335-347.
  • 122. Jeffery G.B.: The motion of Ellipsoid Particles Immersed in a Viscous Fluid, Proc. Roy. Soc. Lond. A, 1923, 102, 161-179.
  • 123. Rożeń A., Bałdyga J.: Study of reactive micromixing of liquids differing in viscosity in laminar flows. Proceedings of 11th European Conference on Mixing, Bamberg, Germany, October 14-17, 2003, 323-330.
  • 124. Carslaw H.S., Jeager J.C., Conduction of Heat in Solids, Clarendon Press, Oxford, 1959.
  • 125. Bałdyga J., Bourne J.R., The effect of micromixing on parallel reactions, Chem. Eng. Sci., 1990, 45, 907-916.
  • 126. Liu C.I., Lee D.J., Micromixing effects in a couette flow reactor, Chem. Eng. Sci., 1999, 54, 2883-2888.
  • 127. Rożeń A., Bakker R.A., Bałdyga J., Effect of operating parameters and screw geometry on micromixing in a co-rotating twin-screw extruder, Chem. Eng. Res. Des., 2001, 79 A, 938-942.
  • 128. Hessel V., Baier T., Löwe H., Löb P., Men Y., Werner B., Determination of the segregation index to sense the mixing quality of scale-up concepts for pilot- and productions-scale microstructured mixers, Proceedings of 12th European Conference on Mixing, Bologna, Italy, 27-30 June 2006, 359-366.
  • 129. Poling B.E., Prausnitz J.M., O’Connel J.P., The Properties of Gases and Liquids. The McGraw-Hill Companies Inc., Boston, 2001.
  • 130. Bourne J.R., Toor H.L., Simple Criteria for Mixing Effects in Complex Reactions, AIChE J., 1977, 23, 602-604.
  • 131. Rys P., The Mixing-Sensitive Product Distribution of Chemical Reactions, Chimia, 1992, 46, 469-476.
  • 132. Fournier M.-C., Falk L., Villermaux J., A new parallel competing reactions system for assessing micromixing efficiency - experimental approach, Chem. Eng. Sci., 1996, 51, 5053-5064.
  • 133. Bourne J.R., Mixing and the Selectivity of Chemical Reactions, Org. Proc. Res. Dev., 2003, 7, 471-508.
  • 134. Saito F., Arai K., Kamiwano M., An extended technique for predicting the mixing times of high-viscosity liquid in a mixer - mixing systems with molecular diffusion and reaction of solutes, J. Chem. Eng. Japan, 1990, 23, 222-227.
  • 135. Frey J.H., Denson C.D., Imidization Reaction Parameters In Molten Polymers For Micromixing Tracer Studies, Chem. Eng. Sci., 1988, 43, 1967-1973.
  • 136. Meyer T., Renken A.,: Characterization of segregation in a tubular polimerization reactor by a new chemical method, Chem. Eng. Sci., 1990, 45, 2793-2800.
  • 137. Yu S.. Micromixing and parallel reactions, Dissertation, ETH Zürich, 1992.
  • 138. Bourne J.R., Gholap R.V., Rewatkar V.B., The influence of viscosity on the product distribution of fast parallel reactions, Chem. Eng. J., 1995, 58, 15-20.
  • 139. Wilson I.R., Comprehensive Chemical Kinetics (ed. Bamford C.H., Tippers C.F.H.), Elsevier, Amsterdam, 1972, 6, 363.
  • 140. Crooks J.E.. Comprehensive Chemical Kinetics (ed. Bamford C.H., Tippers C.F.H.), Elsevier, Amsterdam, 1977, 8, 209.
  • 141. Kirby A.J., Comprehensive Chemical Kinetics (ed. Bamford C.H., Tippers C.F.H.), Elsevier, Amsterdam, 1972, 10, 170.
  • 142. Rożeń A., Investigation of Micromixing in Viscous Liqiuds, rozprawa doktorska, Politechnika Warszawska, 1995.
  • 143. Rożeń A., Bakker R.A., Bałdyga J., Application of Parallel Test Reactions to Study Micromixing in a Co-Rotating Twin-Screw Extruder, Proceedings of 10th European Conference on Mixing, Delft, The Netherlands, 2000, 85-92.
  • 144. Elemans P.H.M., Meijer H.E.H., Encyclopedia of Fluid Mechanics (ed. Cheremisinoff N.P.), Gulf Publishing Company, Houston. 1990, 9, 349-371.
  • 145. Berghaus U., Michaeli W., Current Status of the Development of Reactive Extrusion. Kunststoffe German Plastics, 1991, 81, 3-6.
  • 146. Meijer H.E.H., Elemans P.H.M., The Modeling of Continuous Mixers. Pan I: The Corotating Twin-Screw Extruder, Polym. Eng. Sci., 1988, 28, 275-290.
  • 147. Sastrohartono T., Esseghir M., Kwon T.H., Sernas V., Numerical and Experimental Studies in the Nip Region of a Partially Intermeshing Co-Rotating Twin-Screw Extruder, Polym. Eng. Sci., 1990, 30, 1382-1398.
  • 148. Li Y., Senouci A., La-Fook R.A., Smith A.C., Mixing in a self-wiping co-rotating twin-screw extruder, an experimental study, Plast. Rubb. Proc. Applns., 1989, 11, 207-214.
  • 149. Stręk F., Mieszanie i mieszalniki, WNT, Warszawa 1981.
  • 150. Zlokarnik M., Stirring. Theory and Practice. Wiley-VCH Verlag GmbH, Weinheim, 2001.
  • 151. Chavan V.V., Ulbrecht J., Internal Circulation in Vessels Agitated by Screw Impellers, Chem. Eng. J„ 1973, 6, 213-223.
  • 152. Seichter P., Process Characteristics of Screw Impellers with a Draft Tube for Newtonian Liquids. Pumping Capacity of the Impeller, Coll. Czech. Chem. Commun. 1981, 46, 2021-2031.
  • 153. Kuncewicz C., Szulc K., Kurasiński T., Hydrodynamics of the tank with a screw impeller, Chem. Eng. Proc., 2005, 44, 766-774.
  • 154. Rożeń A., Modelling of Reactive Micromixing of Liquids Differing in Viscosity in Laminar Flows, Proceedings of 12th European Conference on Mixing, Bologna, Italy, 2006, 375-382.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0020-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.