PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rola polimerów w kształtowaniu właściwości spoiw i kompozytów polimerowo-cementowych

Autorzy
Identyfikatory
Warianty tytułu
EN
Role of polymers in forming of properties of polymer-cement binders and composites
Języki publikacji
PL
Abstrakty
PL
Przedmiotem pracy są spoiwa polimerowo-cementowe, stanowiące matrycę zapraw i betonów PCC (ang. polymer-cement concrete). Kompozyty polimerowo-cementowe przewyższają zwykłe betony i zaprawy cementowe pod względem takich cech, jak wytrzymałość na zginanie i rozciąganie, przyczepność do różnych podłoży i odporność na niektóre czynniki zewnętrzne. Podstawowe zależności dotyczące materiałów polimerowo-cementowych przedstawiono w układzie: składniki-struktura-właściwości-zastosowanie. Takie ujęcie miało na celu uporządkowanie prezentowanego w pracy stanu wiedzy w zakresie spoiw polimerowo-cementowych i otrzymywanych z ich udziałem tworzyw; wiele spośród omawianych zagadnień zostało przedstawionych na podstawie wyników badań prowadzonych przez autora, w tym we współpracy z ośrodkami zagranicznymi. Analiza stanu wiedzy stanowiła punkt wyjścia opracowania przez autora rozwiązań następujących, dotychczas nierozstrzygniętych zagadnień: " problemu progu ciągłości fazy polimerowej w spoiwie polimerowo-cementowym, - kształtowania się mikrostruktury PCC w przypadku modyfikatorów typu post-mix, - wpływu warunków dojrzewania na właściwości tworzywa polimerowo-cementowego, - modelu materiałowego PCC (zależność skład - właściwości), - ilościowej oceny wpływu na właściwości kompozytu poszczególnych składników spoiwa polimerowo-cementowego oraz ich współdziałania, tj. efektów synergicznych, - zastosowania modelu materiałowego do projektowania składu i oceny użyteczności PCC, potwierdzonego uzyskaniem zaprawy polimerowo-cementowej o bardzo wysokiej przyczep ności do podłoża. Podstawowym problemem naukowym, związanym z materiałami PCC, jest minimalna zawartość polimeru, przy której tworzy on w twardniejącej matrycy ciągłą błonkę. Jest to zarazem próg racjonalności ekonomicznej modyfikacji betonu polimerami. Najczęściej przyjmuje się, w ujęciu normowym, że próg ten wynosi 5% polimeru w stosunku do masy cementu. W pracy dokonano weryfikacji progu ciągłości na podstawie analizy danych eksperymentalnych oraz uzasadniono jego wartość na podstawie obliczeń i symulacji komputerowych, przeprowadzonych z wykorzystaniem teorii perkolacji.Przedstawiono opracowany przez autora model formowania mikrostruktury kompozytu z modyfikatorem typu post-mix (polimeryzującym po dodaniu do mieszanki betonowe)) na przy-kładzie kompozytu epoksydowo-cementowego. Model ten jest komplementarny w stosunku do niedawno opracowanego przez międzynarodowy zespół ekspertów (A. Beeldens, L. Czarnecki. Y. Ohama, H. Schom, D. Van Gemert), zintegrowanego modelu dotyczącego kompozytów z modyfikatorami typu pre-mix (spolimeryzowanymi przed dodaniem do mieszanki betonowej). Wykazano, że cechy kompozytów polimerowo-cementowych zależą w znacznym stopniu od warunków dojrzewania. Badania przeprowadzone przez autora pozwoliły na dobór metody pielęgnacji, która zapewnia uzyskanie możliwie najlepszych właściwości PCC. Opracowano statystyczno-eksperymentalny model materiałowy (zależność skład-właściwości) kompozytu polimerowo-cementowego i przeanalizowano istotność statystyczną jego elementów. W ten sposób oceniono ilościowo udział poszczególnych składników spoiwu polimerowo-cementowego w kształtowaniu właściwości kompozytu, ze szczególnym uwzględnieniem efektów synergicznych - współdziałania składników spoiwa. Przeprowadzono krytyczną analizę znanych metod projektowania materiałowego i oceny przydatności kompozytów polimerowo-cementowych, w tym rozwiniętą przez autora metodę uogólnionej użyteczności materiałowej. Postawiono tezę, iż możliwe jest wnioskowanie o wpływie dodatku polimeru na właściwości kompozytu na podstawie zawartości i rodzaju polimeru, a zatem możliwe jest racjonalne projektowanie materiałowe kompozytów polimerowo cementowych. Tezę tę udowodniono, wykorzystując opracowany model materiałowy do zaprojektowania zaprawy polimerowo-cementowej o wysokiej przyczepności do podłoża betonowego i korzystnych wartościach innych cech technicznych; uzyskany kompozyt stanowi zapowiedź materiałów nowej generacji, przeznaczonych do napraw betonów wysokiej i bardzo wysokiej wytrzymałości.
EN
The subject of the study are polymer-cement binders as the matrix for polymer-cement concretes and mortars (PCC). The polymer-cement composites are superior to ordinary concretes and mortars in terms of flexural and tensile strength, adhesion to various substrates and resistance to some external factors. The basic relations involved with polymer-cement materials are presented in the logical sequence: components - structure - properties - using. The aim of this approach was to organise the presented state-of-the-art knowledge in the range of polymer-cement binders and polymer-cement composites; many of the discussed problems have been presented on the basis of the results of the author's own research, also in international collaboration. The analysis of the status of knowledge was the entry point for the author's development of the solutions to the following, not yet resolved, problems: - continuity threshold of the polymer phase in the polymer-cement binder, - forming of microstructure of PCC when modified with a post-mix polymer, - influence of curing conditions on the properties of polymer-cement materials, - material model of PCC (composition-properties relationship), - quantitative evaluation of the effect of particular components and their co-operation, i.e. synergic effects on the properties of polymer-cement composite, - application of material model for designing of composition and evaluation of usability of PCC, confirmed by obtaining a polymer-cement mortar of very high bond strength to the concrete substrate. The main scientific problem involved with PCC is the minimum content of polymer, necessary for creation of continuous film in the hardening matrix. This is also the threshold of economic rationality of the modification of concrete using polymers. It is often assumed - in the standard category - that the threshold is equal to 5% of polymer in relation to the Portland cement mass. The verification of the continuity threshold has been done in the presented study, based on the analysis of experimental data. The value of the threshold has been justified on the basis of computer calculations and simulations, using percolation theory. The model of formation of the composite microstructure with a post-mix modifier (polymerising after adding to the concrete mix), developed by the author, has been presented using epoxy-cement composite as an example. The model is complementary to the integrated model of composites with pre-mix modifiers (polymerised before adding to the concrete mix), recently developed by an international team of experts (A. Beeldens, L. Czarnecki, Y. Ohama, H. Schorn, D. Van Gemert). The influence of curing conditions on the properties of polymer-cement composites has been demonstrated. The research by the author has made it possible to select the curing conditions for obtaining the best possible properties of PCC. The statistical-experimental material model (composition-properties relationship) of polymer-cement composite has been developed. The statistical significance of its elements has been analysed. Thus, the share of the particular components of polymer-cement binder in the composite properties has been evaluated quantitatively, including the synergic effects - co-operation of the components of the binder. The known methods of material designing and usability evaluation of PCC have been analysed, using the method of overall desirability, developed by the author. A thesis has been formulated that it is possible to predict the modification effect on the basis of the content and type of the polymer. Therefore, rational material designing of polymer-cement composites is possible. The thesis has been justified by application of the developed material model for de~ signing a polymer-cement mortar with high adhesion to the concrete substrate and other favourable technical features; the obtained composite is the anticipation of repair materials of a new generation, addressed for repairing the high-strength and very high-strength concretes.
Rocznik
Tom
Strony
3--159
Opis fizyczny
Bibliogr. 322 poz., rys., tab., wykr.
Twórcy
autor
  • Wydział Inżynierii Lądowej, Politechnika Warszawska
Bibliografia
  • [1] ACI Report No 548.4 R: Standard specification for latex modified concrete (LMC) overlays. American Concrete Institute Manual of Concrete Practice, ACI Materials J., 5, 1992, s. 521-526.
  • [2] Adler K.K.: The use of redispersible powders in PMV in Europe. 3rd Southern African Conf. on Polymers in Concrete, Johannesburg, 1997, s. 1-25.
  • [3] Afridi M., Ohama Y., Demura K., Iqbal M.: Hydrogarnet-type cubic crystals in polymer-modified mortars. Cement and Concrete Research, 12, 1997, s. 1787-1789.
  • [4] Afridi M., Ohama Y., Demura K., Iqbal M.: A note on the comparison of crack resistance of Ca(OH)2 crystals of unmodified and polymer-modified mortars in carbonated atmosphere. Cement and Concrete Research, 11, 2001, s. 1643-1645.
  • [5] Afridi M., Ohama Y., Demura K., Iqbal M.: Development of polymer films by the coalescence of polymer particles in powdered and aqueous polymer-modified mortars. Cement and Concrete Research, 11, 2003, s. 1715-1721.
  • [6] Afridi M., Ohama Y., Iqbal M., Demura K.: Morphology of Ca(OH)2 in polymer-modified mortars and effect of freezing and thawing action on its stability. Cement and Concrete Composites, 12, 1990, s. 163-173.
  • [7] Akihama S.: Improvement of mechanical properties of concrete through the addition of polymer latex. American Concrete Institute Special Publication SP-40, Detroit, 1973, s. 319-338.
  • [8] Alexanderson J.: Polymer cement concrete for industrial floors. 3rd Int. Congress on Polymers in Concrete, Koriyama, 1981, s. 360-373.
  • [9] Anqi L., Arney D.O., DePuy G.W.: Thermal compatibility of repair materials for concrete. 6th Int. Congress on Polymers in Concrete, Shanghai, 1990, s. 146-165.
  • [10] Baenziger H.: Concrete refurbishment in sewage treatment plants. 4th Southern African Conf. on Polymers in Concrete, Johannesburg, 2000, s. 23-30.
  • [11] Baoyu L., Yinghao Z., Anchi L., Shunying H., Changming X.: Studies and application of polyacrylate emulsion cement mortar. 3rd Int. Congress on Polymers in Concrete, Koriyama, 1981, s. 395-409.
  • [12] Beeldens A.: Influence of polymer modification on the behaviour of concrete under severe conditions. Ph.D. Thesis, Katholieke Universiteit Leuven, 2002.
  • [13] Beeldens A., Monteny J., Vincke E., De Belie N., Van Gemert D., Taerwe L., Verstraete W.: Resistance to biogenic sulphuric acid corrosion of polymer-modified mortars. Cement and Concrete Composites, vol. 23, 2001, s. 47-56.
  • [14] Beeldens A., Van Gemert D.: Paste-aggregate adhesion in polymer-cement porous concrete. 2nd Int. RILEM Symposium ISAP'99 "Adhesion between Polymers and Concrete", Dresden, 1999, s. 93-102.
  • [15] Beeldens A., Van Gemert D., Ohama Y., Czarnecki L.: From microstructure to macrostructure: an integrated model of structure formation in polymer modified concrete. 4th Asia Symposium on Polymers in Concrete - ASPIC'2003, Chuncheon, Korea, 2003, s. 211-219.
  • [16] Beeldens A., Van Gemert D., Poupeleer A.-S., Cornelis B.: Behavior of porous PCC under freeze-thaw cycling. 10th Int. Congress on Polymers in Concrete, Hawaii, 2001 (CD).
  • [17] Beeldens A., Van Gemert D., Schorn H., Ohama Y., Czarnecki L.: From microstructure to macrostructure: an integrated model of structure formation in polymer modified concrete, RILEM Int. J. Materials and Structures, 2005, No 280, s. 601-607.
  • [18] Bell R.L., Dingley R.G.: The mechanical properties of hydrated Portland Cement pastes modified with an SBR polymer latex. 1st Int. Congress on Polymers in Concrete, London, 1975, s. 162-167.
  • [19] Bentz D.P.: Modelling Cement Microstructure: Pixels, Particles, and Property Prediction. Materials and Structures, 32, 1999, s. 187-195.
  • [20] Bentz D.P., Garboczi E.J., Snyder K.A.: A hard core/soft shell microstructural model for studying percolation and transport in three-dimensional composite media. NIST Report (NISTIR 6265), United States Department of Commerce, National Institute of Standards and Technology, Gaithersburg MD, 1999.
  • [21] Bhargava J.K., Rehnström A.: Synergistic strengthening of fiber concrete by polymer emulsion. 3rd Int. Congress on Polymers in Concrete, Koriyama, 1981, s. 234-249.
  • [22] Bijen J.M., Su Z.: Polymer cement concrete: a contribution to modelling of the microstructure. RILEM TC 113 Int. Symp. "Test Methods for Concrete-Polymer Composites", Oostende, 1995, s. 19-27.
  • [23] Bishara A., Rose J., Reda Y.: Shrinkage and creep characteristics of latex-modified concrete. J. of American Concrete Institute, 5, 1978, s. 204-208.
  • [24] Bonora V., Saccani A., Sandrolini F., Bełz G., Dinelli G.: Resistance to environmental attacks of polymer modified mortars containing fly ashes. 8th Int. Congress on Polymers in Concrete, Oostende, 1995, s. 221-226.
  • [25] Box G., Draper N.: Empirical model-building and response surfaces. John Wiley & Sons, New York-Toronto, 1987.
  • [26] Brandt A.M.: Zastosowanie włókien jako ubrojenia w elementach betonowych. Konferencja "Beton na Progu Nowego Milenium", Kraków, 2000, s. 433-444.
  • [27] Bright R.P., Mraz T.J., Vasallo J.C.: The influence of various polymeric materials on the physical properties of a cementitious patching compound. ASTM Special Technical Publication STP 1176: "Polymer-Modified Hydraulic-Cement Mixtures" (eds. Louis A. Kuhlmann and D. Gerry Walters), ASTM, Philadelphia-Fredericksburg, 1993, s. 44-62.
  • [28] Broniewski T., Śliwiński J.: Study of the significance of the polymer phase in the impregnated concrete. 4th Int. Congress on Polymers in Concrete, Darmstadt, 1984, s. 247-249.
  • [29] Bruhwiler E., Denarie E., Hasegawa T., Maier G., Mihashi H., Saouma V.E., Slovik V., Wittmann F.H.: Test method to determine the fracture properties of concrete. Proposal on test method for American Concrete Institute, Lausanne, 2004.
  • [30] Butt J.M., Topilski G.V., Mikulski V.G., Kozłow V.V., Gorban A.K.: Issledowanie wzaimodiejstwia epoksidnogo polimera s portlandcementami. Izw. Wuzow "Stroitielstwo i Architektura", 1, 1971, s. 75-80.
  • [31] Burge T.A.: Evaluation of polymers for improving cement mortars. 5th Int. Congress on Polymers in Concrete, Brighton, 1987, s. 293-300.
  • [32] Cabrera J.G., Makhtar A.M.: The influence of type of hydraulic cement on the properties of polymer modified concrete. 3rd Southern African Conf. on Polymers in Concrete, Johannesburg, 1997, s. 34-54.
  • [33] Carrasquillo R.L., Slate F.O, Nilson A.H.: Microcracking and behavior of high strength concrete subject to short term loading. ACI J., 3, 1981, s. 179-186.
  • [34] Chandra S.: Historical background of polymers used in concrete. 8th Int. Congress on Polymers in Concrete, Oostende, 1995, s. 3-11.
  • [35] Chandra S.: Interaction of polymer with tricalcium aluminate and ciment fondu. 9th Int. Congress on Polymers in Concrete, Bologna, 1998, s. 245-254.
  • [36] Chandra S.: A freeze-thaw resistance of high strength mortars with polymer. 9th Int. Congress on Polymers in Concrete, Bologna, 1998, s. 733-738.
  • [37] Chandra S., Flodin P.: Interactions of polymers with portland cement. Cement and Concrete Research, 6, 1987, s. 875-890.
  • [38] Chmielewska B., Czarnecki L.: Ocena skuteczności modyfikacji zapraw żywicznych domieszkami silanowymi. XLVII Konf. Nauk. KILiW PAN i KN PZITB "Problemy Naukowo-Badawcze Budownictwa", Krynica, 2001, t. 1, s. 285-292.
  • [39] Chorinsky E.: Polymers in cement mortars 1950-1987 in Germany. 5th Int. Congress on Polymers in Concrete, Brighton, 1987, s. 23-25.
  • [40] Clifton J.R, Czarnecki L., Łukowski P.: Application of material model in optimization of polymer concretes. 8th Int. Congress on Polymers in Concrete ICPIC'95, Ostenda, 1995, s. 293-298.
  • [41] Conrad K.-H.: ECC-mortar - properties and interaction of epoxy resin with hardened cement paste, mechanical behaviour under confirming pressure. 4th Int. Congress on Polymers in Concrete, Darmstadt, 1984, s. 391-404.
  • [42] Cook D.J.: Hydration characteristics of premix polymer cement materials. lst Int. Congress on Polymers in Concrete, London, 1975, s. 144-150.
  • [43] Cornell J.A.: Experiments with mixtures; designs, models and the analysis of mixture data. John Wiley & Sons, New York - Toronto, 1981.
  • [44] Courard L., Wiertz J., Darimont A., Degeimbre R.: Influence of composition of repairing mortars on adherence. 8th Int. Congress on Polymers in Concrete, Oostende, 1995, s. 119-124.
  • [45] Courard L., Wiertz J., Darimont A., Degeimbre R.: Influence of operating conditions and humidity on adherence of repair mortars. 8th Int. Congress on Polymers in Concrete, Oostende, 1995, s. 585-590.
  • [46] Cresson L.: Improved manufacture of rubber road-facing, rubber-flooring, rubber-tiling or other rubber-lining. British Patent 191, 474 (1923).
  • [47] Czarnecki L.: Betony żywiczne. Arkady, Warszawa, 1982.
  • [48] Czarnecki L.: Introduction to material model of polymer concrete. 4th Int. Congress on Polymers in Concrete ICPIC'84, Darmstadt, 1984, s. 50-64.
  • [49] Czarnecki L.: Status of polymer concrete. Concrete International: Design and Construction, 7, 1985, s. 47-53.
  • [50] Czarnecki L.: Opisy i właściwości składników betonopodobnych kompozytów polimerowych. W: Struktura a właściwości betonu i kompozytów betonopodobnych. Stan wiedzy w Polsce (red. J. Kasperkiewicz), Studia z zakresu inżynierii nr 28, Warszawa - Łódź, 1989, s. 43-47.
  • [51] Czarnecki L.: Durability of Concrete Polymer Composites. Int. Colloquium on Corrosion of Cement Paste (red. W. Kurdowski), Kraków-Mogilany, 1994, s. 105-112.
  • [52] Czarnecki L.: Polymers in concrete on the edge of the millennium. 10th Int. Congress on Polymers in Concrete, 2001, Hawaii (CD).
  • [53] Czarnecki L.: Wyzwania inżynierii materiałów budowlanych. XLVII Konf. Nauk. KILiW PAN i KN PZITB, Krynica, 2001, t. 1, s. 213-232.
  • [54] Czarnecki L.: Materiały budowlane. XLVIII Konf. Nauk. KILiW PAN i KN PZITB, Krynica, 2002, t. "Nauka w dziedzinie inżynierii lądowej i wodnej - diagnoza i prognoza rozwoju", s. 65-80.
  • [55] Czarnecki L.: Concrete-Polymer Composites: challenges and possibilities. 4th Asia Symposium on Polymers in Concrete - ASPIC'2003, Chuncheon, Korea, 2003, s. 3-15.
  • [56] Czarnecki L.: Mechanisms of industrial floor deterioration - causes, results and preventive means. 5th Int. Colloquium "Industrial Floors'03", Esslingen, 2003, s. 65-72.
  • [57] Czarnecki L.: Polymers in Concrete - personal reflections on the edge of the new century. Concrete International, 8, 2005, s. 1-7.
  • [58] Czarnecki L., Błażejewicz T.: Żywice epoksydowe jako modyfikatory mieszanek betonowych. Polimery - Tworzywa Wielkocząsteczkowe, 6, 1990, s. 188-193.
  • [59] Czarnecki L., Broniewski T., Henning O.: Chemia w budownictwie. Arkady, Warszawa, 1994.
  • [60] Czarnecki L., Emmons P.H.: Naprawa i ochrona konstrukcji betonowych. Polski Cement, Kraków, 2003.
  • [61] Czarnecki L., Garbacz A.: Evaluation of polymer coating - crack-bridging ability. Int. Colloquium "Industrial Floors'95", Esslingen, 1995, s. 703-705.
  • [62] Czarnecki L., Garbacz A., Łukowski P., Clifton J.R.: Optimization of Polymer Concrete Composites: Final Report. NIST Report (NISTIR 6361). United States Department of Commerce, National Institute of Standards and Technology, Gaithersburg MD, 1999.
  • [63] Czarnecki L., Garbacz A., Łukowski P., Clifton J.R.: Polymer Composites for Repairing of Portland Cement Concrete: Compatibility Project. NIST Report (NISTIR 6394), United States Department of Commerce, National Institute of Standards and Technology, Gaithersburg MD, 1999.
  • [64] Czarnecki L., Grzeszczyk S., Łukowski P.: Optimization of the modified portland cement pastes. Int. Colloquium "Advances in Cement Chemistry" (red. W. Kurdowski), Mogilany, 1997, s. 117-132.
  • [65] Czarnecki L., Grzeszczyk S., Łukowski P.: Optymalizacja składu modyfikowanych spoiw cementowych. XLIII Konf. Nauk. KILiW i KN PZITB, Krynica, 1997, t. 4, s. 9-16.
  • [66] Czarnecki L., Hertz Z.: Utwardzanie żywic epoksydowych w obecności wody. Polimery - Tworzywa Wielkocząsteczkowe, 19, 1974, s. 600-603.
  • [67] Czarnecki L., Kurdowski W.: Tendencje kształtujące przyszłość betonu. IV Konf. "Dni Betonu", Wisła, 2006, s. 47-64.
  • [68] Czarnecki L., Lach V.: Structure and fracture in polymer concretes: some phenomenological approach. lst Int. Symposium on Brittle Matrix Composites, Jabłonna, 1985. Elsevier, London, 1986, s. 241-261.
  • [69] Czarnecki L., Lenarcik A., Łukowski P., Piasta Z.: A multicriteria Optimization of epoxy concrete using the desirability function approach. IV Int. Symp. on Brittle Matrix Composites BMC-4, Warszawa, 1994. IKE and Woodhouse Publishers (red. A.M. Brandt, V.C. Li i I.H. Marshall), Warszawa-Cambridge, 1994, s. 245-254.
  • [70] Czarnecki L., Łukowski P.: Znaczenie powierzchni międzyfazowych w betonopodobnych kompozytach polimerowych. I Konf. Nauk.-Techn. "Inżynieria Materiałowa", Bydgoszcz, 1989, t. 1, s. 97-114.
  • [71] Czarnecki L., Łukowski P.: Optymalizacja betonów polimerowo-cementowych. W: Metody optymalizacji materiałów kompozytowych o matrycach cementowych (red. A.M. Brandt), Studia z zakresu inżynierii, KILiW PAN, Warszawa, 1994, s. 207-225.
  • [72] Czarnecki L., Łukowski P.: Model materiałowy betonów żywicznych. Konf. Nauk.-Techn. "Zagadnienia Materiałowe w Inżynierii Lądowej - MATBUD'96", Kraków - Mogilany, 1996, s. 62-69.
  • [73] Czarnecki L., Łukowski P.: Podatność materiałowa betonów epoksydowych. XLII Konf. Nauk. KILiW i KN PZITB, Krynica, 1996, t. 4, s. 13-20.
  • [74] Czarnecki L., Łukowski P.: Optimization of polymer-cement concretes. In: Optimization methods for material design of cement-based composites (red. A.M.Brandt). Modern Concrete Technology 7, E & FN Spon, London and New York, 1998, s. 231-250.
  • [75] Czarnecki L., Łukowski P.: Modelling of the polymer concrete properties. Studies of University of Transport and Communications in Źilina, Civil Engineering, vol. 21, 1998, s. 21-29.
  • [76] Czarnecki L., Łukowski P.: An usability approach to technical evaluation of the polymer coatings for concrete substrate. 2nd Int. RILEM Symp. on Adhesion between Polymers and Concrete ISAP'99, Dresden, 1999, s. 173-180.
  • [77] Czarnecki L., Łukowski P.: Wpływ domieszek i dodatków polimerowych na trwałość betonu. II Konf. "Dni Betonu - Tradycja i Nowoczesność", Szczyrk, 2002, s. 173-200.
  • [78] Czarnecki L., Łukowski P.: Influence of polymer admixtures and additives on durability of concrete. Cement Wapno Beton, 1, 2004, s. 38-47.
  • [79] Czarnecki L., Łukowski P.: Concrete-Polymer Composites: status and trends. 3rd Int. Conf. on Construction Materials - Performance, Innovations and Structural Implications, Vancouver, Canada, 2005 (CD).
  • [80] Czarnecki L., Łukowski P.: Naprawa konstrukcji betonowych w świetle norm europejskich. Materiały Budowlane, 9, 2005, s. 2-5, 31.
  • [81] Czarnecki L., Łukowski P.: Betony polimerowe: kształtowanie mikrostruktury i właściwości. Polsko-Niemiecko-Czeskie Symp. Nauk.-Techn. "Aktualne Zagadnienia Rozwoju Technologii Betonu", Opole, 2005, Zeszyty Naukowe Politechniki Opolskiej - Budownictwo, nr 311, 2005, z. 48, s. 59-68.
  • [82] Czarnecki L., Łukowski P.: Naprawa konstrukcji betonowych według norm europejskich. XX Konf. Nauk.-Techn. "Beton i Prefabrykacja - Jadwisin 2006", Jadwisin, 2006, s. 87-96.
  • [83] Czarnecki L., Łukowski P., Chmielewska B.: Statistical analysis of the synergetic effects in epoxy concretes. XI Int. Congress on Polymers in Concrete ICPIC'04, Berlin, 2004 (CD).
  • [84] Czarnecki L., Łukowski P., Nejman R.: Statystyczna ocena jednorodności betonów epoksydowych. XXXVI Konf. Nauk. KILiW i KN PZITB, Krynica, 1990, t. 4, s. 17-21.
  • [85] Czarnecki L., Łukowski P., Nejman R.: The Statistical evaluation of epoxy concrete heterogeneity. Cement and Concrete Composites, 6, 1996, s. 417-428.
  • [86] Czarnecki L., Łukowski P., Wiąckowska A.: Optymalizacja składu betonów polimerowo-cementowych. Materiały Budowlane, 1996, 5, s. 81-82.
  • [87] Czarnecki L., Schorn H.: Nanomonitorowanie struktury betonu polimerowo-cementowego. II Konf. "Dni Betonu", Szczyrk, 2002, s. 409-426.
  • [88] Czarnecki L., Ściślewski Z.: Ochrona budowli przed korozją jako zadanie badawcze. Ochrona przed Korozją, 24, 1986, s. 153-158.
  • [89] Czarnecki L., Vaysburd A.M., Mailvaganam N., Emmons P.H., McDonald J.: Repair and rehabilitation of structures - Some random thoughts. Indian Concrete J., 1, 2000, s. 13-21.
  • [90] Czarnecki L., Weiss V.: Meaning of synergy effects in composite materials and structures. 2nd Int. Symp. on Brittle Matrix Composites BMC-2, Cedzyna, 1988, s. 526-535.
  • [91] Czermiński J., Iwasiewicz A., Paszek Z., Sikorski A.: Metody statystyczne dla chemików. Wyd. Nauk. PWN, Warszawa, 1992.
  • [92] DePuy G.W.: A guide to the use of polymer modified concrete. 8th Int. Congress on Polymers in Concrete, Oostende, 1995, s. 381-386.
  • [93] DePuy G.W.: Technical development of concrete polymer materials. 9th Int. Congress on Polymers in Concrete, Bologna, 1998, s. 441-445.
  • [94] Dikeou J.T.: Review of worldwide developments and use of polymers in concrete. 1st Int. Congress on Polymers in Concrete, London, 1975, s. 2-8.
  • [95] Dikeou J.T.: Introduction to concrete polymer materials. 3rd Southern African Conf. on Polymers in Concrete, Johannesburg, 1997, s. 92-97.
  • [96] Dikeou J.T., Tatro S.: Lower monumental lock wall - deterioration, repair and subsequent performance. 4th Southern African Conf. on Polymers in Concrete, Johannesburg, 2000, s. 31-39.
  • [97] Dimmig A., Stark J.: An investigation of durability of polymer cement concrete/mortar (PCC). 9th Int. Congress on Polymers in Concrete, Bologna, 1998, s. 611-631.
  • [98] Discussion on "Concretes with Dispersed Polymers added". 1st Int. Congress on Polymers in Concrete, London, 1975, s. 157-160.
  • [99] Do J., Soh Y.: Performance of polymer-modified self-leveling mortars with high polymer-cement ratio for floor finishing. Cement And Concrete Research, 10, 2003, s. 1497-1505.
  • [100] Donnelly J.H.: Inorganic cement-epoxy resin composition containing animal glue. US Patent No 3, 198758, 1965.
  • [101] Dyrektywa Rady Wspólnot Europejskich w sprawie zbliżenia ustaw i aktów wykonawczych państw członkowskich, dotyczących wyrobów budowlanych nr 89/106/EEC. ITB, Warszawa, 1994.
  • [102] El-Darwish I.A., Wahby W.S.: Polymers in building materials. 6th Int. Congress on Polymers in Concrete, Shanghai, 1990, s. 71-78.
  • [103] Evbuomwan N.F.O.: A state of the art report on the strength and durability properties of polymer modified mortars and concrete. 6th Int. Congress on Polymers in Concrete, Shanghai, 1990, s. 52-59.
  • [104] Evbuomwan N.F.O.: Strengtening effects of microsilica in a polymer modified mortar under different curing regimes. 3rd Southern African Conf. on Polymers in Concrete, Johannesburg, 1997, s. 108-116.
  • [105] N.F.O.: Flexural behaviour of reinforced polymer modified mortar under wet conditions. 3rd Southern African Conf. on Polymers in Concrete, Johannesburg, 1997, s. 117-124.
  • [106] Fagerlund G.: Trwałość konstrukcji betonowych. Arkady, Warszawa, 1997.
  • [107] Federal Ministry for Transport: Technical guidelines for concrete repair systems made of cement mortar/concrete with a polymer additive (PCC) (TP BE-PCC), 1990.
  • [108] Federal Ministry for Transport: Additional Technical Contract Conditions and Guidelines for the Protection and Repair of Concrete Construction Components ZTV-SIB 90, 1991.
  • [109] Feng J., Winnik M.A., Shivers R.R., Clubb B.: Polymer blend latex films: morphology and transparency. Macromolecules, 28, 1995, s. 7671-7682.
  • [110] Fiertak M.: Dobór cech diagnostycznych w badaniach odporności korozyjnej materiałów budowlanych z tworzyw sztucznych. Rozprawa doktorska, Politechnika Krakowska, Kraków, 1985.
  • [111] Fordoński K.: Ocena przydatności metakaolinitu jako dodatku mikroziarnistego do betonów wysokowartościowych. Praca magisterska, Wydział Inżynierii Lądowej Politechniki Warszawskiej, Warszawa, 2005.
  • [112] Fowler D.W.: Current status of polymers in concrete. 5th Int. Congress on Polymers in Concrete, Brighton, 1987, s. 3-7.
  • [113] Fowler D.W.: Status of concrete-polymer materials. 6th Int. Congress on Polymers in Concrete, Shanghai, 1990, s. 10-27.
  • [114] Fowler D.W.: Polymers in concrete: where have we been and where are we going? 10th Int. Congress on Polymers in Concrete, Hawaii, 2001 (CD).
  • [115] Fowler D.W., DePuy G.W.: Status of concrete polymer materials in the United States. 8th Int. Congress on Polymers in Concrete, Oostende, 1995, s. 67-73.
  • [116] Fu X., Lu W., Chung D.: Improving the bond strength between carbon fiber and cement by fiber surface treatment and polymer addition to cement mix. Cement and Concrete Research, vol. 26, No 7, 1996, s. 1007-1012.
  • [117] Fukushima T., Fukushi L: Quantitative evaluation of the influence of polymeric surface finishing materials on the progress of neutralization of concrete. Part 2 - Prediction of service lives of external vertical walls of reinforced concrete buildings. J. of Structural and Construction Engineering Transactions of Architectural Institute of Japan, 434, 1992, s. 1-12.
  • [118] Gao J., Qian C., Wang B., Morino K.: Experimental study on properties of polymer-modified cement mortars with silica fume. Cement and Concrete Research, 1, 2002, s. 41-45.
  • [119] Garbacz A., Łukowski P., Bęcek J.: Wpływ zawartości polimeru na propagację fali ultradźwiękowej w kompozytach polimerowo-cementowych. 33. Krajowa Konf. Badań Nieniszczących, Poznań-Licheń. 2004, Ref. nr 6 (R06), Zeszyty Problemowe "Badania Nieniszczące", 9 (2004), s. 83-88 (wyd. CD; ISBN 83-87982-31-8).
  • [120] Garboczi E.J., Bentz D.P.: Percolation Aspects of Cement Paste and Concrete: Properties and Durability. American Concrete Institute Spring Convention "High-Performance Concrete: Research to Practice", ACI Special Publication SP-189, Chicago, 1999, s. 147-164.
  • [121] Geist J.M., Amanga S.V., Mellor B.B.: Improved portland cement mortars with polyvinyl acetate emulsions. Industrial and Engineering Chemistry, 45, 1953, s. 759-767.
  • [122] Głodkowska W., Piątek Z.: Starzenie kompozytów polimerowych i polimerowo-cementowych stosowanych do napraw betonu. XLVII Konf. Nauk. KILiW PAN i KN PZITB, Krynica, 2001, s. 315-322.
  • [123] Gongshan W., Shanyuan W.: Study on the modified cement mortar by PMMA. 6th Int. Congress on Polymers in Concrete, Shanghai, 1990, s. 299-303.
  • [124] Gorur V., Wittman F.H.: Hydration of a cement in a polymer system. 5th Int. Congress on Polymers in Concrete, Brighton, 1987, s. 199-203.
  • [125] Gruszczyński M.: Skurcz zapraw cementowych modyfikowanych dodatkiem polimerów. XX Konf. Nauk.-Techn. "Beton i Prefabrykacja - Jadwisin 2006", Jadwisin, 2006, s. 141-148.
  • [126] Gruszczyński M.: Właściwości betonów cementowych modyfikowanych dodatkiem polimerów. IV Konf. "Dni Betonu", Wisła, 2006, s. 363-371.
  • [127] Grzeszczyk S.: Wybrane materiały kompozytowe w budownictwie. XLVII Konf. Nauk. KILiW PAN i KN PZITB "Problemy Naukowo-Badawcze Budownictwa", Krynica, 2001, t. 1, s. 255-276.
  • [128] Guide for the use of polymers in concrete - Report of ACI Committee 548. J. of the American Concrete Institute, 9-10, 1986, s. 798-829.
  • [129] Harrington E.: The desirability function. Industrial Quality Control, 10, 1965, s. 494-498.
  • [130] Hasegawa M., Kobayashi T., Pushpalal G.K.D.: A new class of high strength, water and heat resistant polymer-cement composite solidified by an essentially anhydrous phenol resin precursor. Cement and Concrete Research, vol. 25, No 6, 1995, s. 1191-1198.
  • [131] Hashimoto H., Ohama Y.: Effects of curing methods on strength of polymer modified concretes. J. of College of Engineering, Nihon University, Koriyama, 19, 1978, s. 113-119.
  • [132] Hop T.: Betony modyfikowane polimerami. Arkady, Warszawa, 1976.
  • [133] Huang Y., Wu K., Tan M.: The mechanism of modification in mechanical behaviour of PCC, PIC and PI (PCC). 4th Int. Congress on Polymers in Concrete, Darmstadt, 1984, s. 429-433.
  • [134] Hughes B., Lubis B.: Roller compacted sheets of polymer modified mortar. Cement and Concrete Composites, vol. 18, 1996, s. 41-46.
  • [135] Huizhong W., Xifeng L., Huanian W., Chunhua Z., Shuxiang Z.: Thew investigation of the influence of polymer molecular weight on the properties of polymer cement concrete. 6th Int. Congress on Polymers in Concrete, Shanghai, 1990, s. 204-209.
  • [136] Hyla L: Tworzywa sztuczne: własności - przetwórstwo - zastosowanie. PWN, Warszawa, 1982.
  • [137] Isenberg J., Rapp D., Sutton E., Vanderhoff J.: Microstructure and strength of the bond between concrete and styrene-butadiene latex modified mortar. Highway Research Record 370, TRB, National Research Council, 1971, s. 75-89.
  • [138] Isenberg J., Vanderhoff J.: A hypothesis for the reinforcement of portland cement by latex. American Chemical Society Polymer Reprints, 2, 1973.
  • [139] Jędrzejewska-Ścibak T.: Zadania budownictwa na tle strategii zrównoważonego rozwoju. XLVII Konf. Nauk. KILiW PAN i KN PZITB "Problemy Naukowo-Badawcze Budownictwa", Krynica, 2001, t. 1, s. 153-162.
  • [140] Jinping L., Liping X., Xueli W.: Diffusion of chloride ions in polymer modified cement paste. 6th Int. Congress on Polymers in Concrete, Shanghai, 1990, s. 268-274.
  • [141] Jo Y., Ohama Y., Demura, K.: Strength, adhesion and chemical resistance of epoxy-modified mortars without hardener. 1st East Asia Symposium on Polymers in Concrete, 1994, s. 231-240.
  • [142] Joo M.-K., Lee Y.-S., Chung I.-S.: Dry shrinkage and strength properties of ultrarapid-hardening polymer-modified mortar using redispersible polymer powder. 4th Asia Symposium on Polymers in Concrete - ASPIC'2003, Chuncheon, Korea, 2003, s. 235-241.
  • [143] Jóźwiak D.: Beton wysokowartościowy w zastosowaniu do konstrukcji mostowych. Praca magisterska, Wydział Inżynierii Lądowej Politechniki Warszawskiej, Warszawa, 1999.
  • [144] Justnes H., Cantens J., Polet J.: Chloride penetration in mortars modified with different acrylic latexes. 7th Int. Congress on Polymers in Concrete, Moscow, 1992, s. 124-134.
  • [145] Justnes H., Oye B.A.: The microstructure of polymer cement mortars. Nordic Concrete Research, 9, 1990, s. 69-80.
  • [146] Justnes H., Oye B.A.: A microstructural approach to an evaluation of factors affecting the performance of polymer cement concrete and mortars (PCC). 7th Int. Congress on Polymers in Concrete, Moscow, 1992, s. 184-192.
  • [147] Justnes H., Reynaers T., Van Zundert W.: Moisture transport in polymer cement mortars based on latices and redispersible polymer powders. 9th Int. Congress on Polymers in Concrete, Bologna, 1998, s. 633-645.
  • [148] Justnes H., Reynaers T., Van Zunder W.: Dimensional changes of polymer cement mortars based on latices and redispersible polymer powders due to moisture transport. 2nd Int. RILEM Symp. ISAP'99 "Adhesion between Polymers and Concrete", Dresden, 1999, s. 475-484.
  • [149] Kakiuchi H.: New epoxy resins. Shokodo, Tokio, 1985.
  • [150] Kardon, J.B.: Polymer-Modified Concrete: Review. J. of Materials in Civil Engineering, 5, 1997, s. 85-92.
  • [151] Karyś J., Abdulrahman O.O.: Kompozyty cementowe modyfikowane metakrylanem metylu i ich odporność korozyjna. IX Konf. "OKTRA'92", Wrocław-Szklarska Poręba, 1992, s. 69-74.
  • [152] Kasai Y., Matsui L, Fukushima Y.: Physical properties of polymer-modified mortars. 3rd Int. Congress on Polymers in Concrete, Koriyama, 1981, s. 178-192.
  • [153] Kasperkiewicz J. (red.): Struktura a właściwości betonu i kompozytów betonopodobnych - stan wiedzy w Polsce. Studia z zakresu inżynierii nr 28, KILiW PAN, PWN, Warszawa-Łódź, 1989.
  • [154] Kasperkiewicz J.: A review of concrete mix design methods. In: Optimization methods for material design of cement-based composites (red. A.M. Brandt). Modern Concrete Technology 7, E & FN Spon, London and New York, 1998, s. 60-114.
  • [155] Katsuhata T., Ohama Y., Demura K.: Investigation of microcracks self-repair function of polymer-modified mortars using epoxy resins without hardeners. 10th Int. Congress on Polymers in Concrete, 2001, Hawaii (CD).
  • [156] Kibert C.J.: Establishing principles and a model for sustainable construction. 1st Int. Conf. CIB TG 16, Floryda, 1999, s. 3-12.
  • [157] Kiernożycki W.: Kształtowanie trwałości betonowych konstrukcji masywnych. Konf. "Beton i zrównoważony rozwój", Wyd. Cemex, Rudniki-Częstochowa, 2006.
  • [158] Kim Y.-G., Hwang J.-H., Park D.-H.: Properties of latex modified concrete (LMC) for bridge deck overlay. 4th Asia Symp. on Polymers in Concrete - ASPIC'2003, Chuncheon, Korea, 2003, s. 75-80.
  • [159] Kucharska L.: Domieszki upłynniające w betonie, przykłady zastosowań. Konf. "Beton na Progu Nowego Milenium", Kraków, 2000, s. 55-72.
  • [160] Kuhlmann L.A.: Using styrene-butadiene latex as a modifier to concrete for bridge deck and parking garage overlays. ASTM Special Technical Publication STP 1176: "Polymer-Modified Hydraulic-Cement Mixtures" (eds. Louis A. Kuhlmann and D. Gerry Walters), ASTM, Philadelphia-Fredericksburg, 1993, s. 125-140.
  • [161] Kulpiński J.: Ocena właściwości zaprawy cementowej modyfikowanej polimerem epoksydowym. Rozprawa doktorska, Politechnika Rzeszowska, Rzeszów, 2003.
  • [162] Larbi J.A., Bijen J.M.: A study of chemical interactions between some polymer dispersions and portland cement during hydration. 6th Int. Congress on Polymers in Concrete, Shanghai, 1990, s. 185-192.
  • [163] Larbi J., Bijen J.M.: Interaction of polymers with portland cement during hydration. Cement and Concrete Resarch, l, 1990, s. 139-147.
  • [164] Lavelle J.: Acrylic latex-modified portland cement. ACI Materials J., 1-2, 1988, s. 41-47.
  • [165] Lefebure V.: Improvements in or relating to concrete, cements, plasters and the like. British Patent 217, 279 (1924).
  • [166] Li Y.C., Maalej M.P.: Toughening in cement based composites. Part I: Cement, mortar and concrete. Cement and Concrete Composites, 4, 1996, s. 223-237.
  • [167] Liming Z., Muhua T., Keru W.: The corrosion of reinforcing steel bars in polymer-modified mortar. 6th Int. Congress on Polymers in Concrete, Shanghai, 1990, s. 275-279.
  • [168] Luoli W., Dianming H., Renru L., Xiaoshu Z.: Application of self-emulsify epoxy resin-cement mortar for repair of concrete road. 6th Int. Congress on Polymers in Concrete, Shanghai, 1990, s. 657-660.
  • [169] Łukowski P.: Model zależności skład - właściwości betonów żywicznych. Rozprawa doktorska, Politechnika Warszawska, Warszawa, 1995.
  • [170] Łukowski P.: Metodą prób i błędów. Polski Cement, 4, 1998, s. 6.
  • [171] Łukowski P.: Użyteczność jako miara przydatności zapraw polimerowo-cementowych. Materiały Budowlane, 5, 2000, s. 84-85 i 97.
  • [172] Łukowski P.: Wpływ rozwiązania materiałowego na szczelność zapraw polimerowo-cementowych. XII Konf. Naukowo-Techniczna "Trwałość Budowli i Ochrona przed Korozją - KONTRA 2000", Zakopane, 2000, s. 213-220.
  • [173] Łukowski P.: Spoiwa polimerowo-cementowe. Sprawozdanie z pracy badawczej, Politechnika Warszawska, Wydział Inżynierii Lądowej, Warszawa, 2000.
  • [174] Łukowski P.: Wpływ warunków dojrzewania na właściwości kompozytów polimerowo-cementowych. IV Konf. Nauk.-Techn. "Zagadnienia Materiałowe w Inżynierii Lądowej - MATBUD'2003", Kraków, 2003, s. 281-288.
  • [175] Łukowski P.: Domieszki do zapraw i betonów. Polski Cement Sp. z o.o., Kraków 2003.
  • [176] Łukowski P.: Próg ciągłości fazy polimerowej w kompozytach polimerowo-cementowych. L Konf. Nauk. KILiW i KN PZITB, Krynica, 2004, t. 3, s. 141-148.
  • [177] Łukowski P.: Przyczepność betonopodobnych kompozytów polimerowo-cementowych do podłoża/Adhesion of polymer-cement concretes to the substrate. Cement Wapno Beton, 3, 2005, s. 142-147.
  • [178] Łukowski P.: Kompozyty polimerowo-cementowe o podwyższonej przyczepności do podłoża. 2. Symp. Polsko-Walońskie "Trendy w Inżynierii Materiałów Budowlanych", Warszawa, 2005.
  • [179] Łukowski P.: Polymer-cement composites with improved adhesion to the concrete substrate. European Materials Research Society Fall Meeting E-MRS 2005, Warsaw, 2005, s. 164-165.
  • [180] Łukowski P.: Polymer-cement mortars of high bond strength to the concrete substrate. Int. Workshop "City of Tomorrow and Cultural Heritage - Pomerania Outlook", Key Action of EC Programme, Gdańsk, 2005, s. 161-164.
  • [181] Łukowski P.: Application of percolation theory for explaining of microstructure forming in polymer-cement concretes. Int. Symp. Polymers in Concrete, Guimaraes, Portugal, 2006, s. 111-118.
  • [182] Łukowski P.: Polimerowo-cementowa zaprawa naprawcza o podwyższonej przyczepności do betonu. XXIII Konf. Nauk.-Techn. "Awarie Budowlane", Szczecin-Międzyzdroje, 2007, s. 851-858.
  • [183] Mai Y., Cotterell B.: Porosity and mechanical properties of epoxy resin modified cement mortar. Cement and Concrete Research, 5, 1986, s. 646-652.
  • [184] Makhtar A.M.: Properties and performance of polymer modified concrete. Ph.D. Thesis, The University of Leeds, Leeds, 1997.
  • [185] Mangat P.S., Baggott R., Evans D.A.: Creep characteristics of polymer modified concrete under uniaxial compression. 3rd Int. Congress on Polymers in Concrete, Koriyama, 1981, s. 193-208.
  • [186] Marks M., Marks W., Jędrzejuk H., Piasta Z., Lenarcik A: Mathematical Foundations of the optimization of composites. In: Optimization methods for material design of cement-based composites (red. A.M. Brandt). Modern Concrete Technology 7, E & FN Spon, London and New York, 1998, s. 14-59.
  • [187] Marusin S.L.: Microstructure, pore characteristics, and chloride ion penetration in contention concrete and concretes containing polymer emulsions. ACI Special Publication SP-99-8, Philadelphia, 1987, s. 135-150.
  • [188] Mason J.A.: Application of polymer concrete. American Concrete Institute Special Publication SP-69, Philadelphia, 1981, s. 1-17.
  • [189] Maultzsch M.: Consistence and workability of polymer modified cement concrete and mortar (PCC). 6th Int. Congress on Polymers in Concrete, Shanghai, 1990, s. 812-817.
  • [190] Maultzsch M.: Investigations on PCC repairs with respect to durability. 8th Int. Congress on Polymers in Concrete, Oostende, 1995, s. 263-268.
  • [191] Maultzsch M., Hoffmann D.: Effects of short curing on the performance of PCC. 9th Int. Congress on Polymers in Concrete, Bologna, 1998, s. 509-514.
  • [192] McDonald J.: Performance criteria for polymer-modified repair materials. 10th Int. Congress on Polymers in Concrete, 2001, Hawaii (CD).
  • [193] Meester R., Roy R.: Continuum percolation. Series: Cambridge tracts in mathematics, No 119, Cambridge University Press, Cambridge-New York, 1996.
  • [194] Mehta P.: Concrete; structure, properties and materials. Prentice-Hall Inc., New York, 1986.
  • [195] Miller M.: Polymers in cementitious materials. Rapra Technology Ltd., Shawbury, UK, 2005.
  • [196] Mindess S.: The fracture process zone in concrete. In: Toughening mechanisms in Quasi-Brittle Materials (red. S.P. Shah), Kluwer Academic Publishers, Dordrecht, 1991, s. 271-286.
  • [197] Mirza J., Durand B.: Laboratory and field performance of cement and polymer cement composites. 8th Int. Congress on Polymers in Concrete, Oostende, 1995, s. 465-471.
  • [198] Mirza J., Mirza M.S., Lapointe R.: Laboratory and field performance of polymer-modified cement-based repair mortars in cold climates. Construction and Building Materials, 6, 2002, s. 365-374.
  • [199] Młodecki J., Stebnicka M.: Domieszki do betonu. Centralny Ośrodek Informacji Budownictwa, Warszawa, 1996.
  • [200] Monteny J., De Belie N., Vincke E., Verstraete W., Taerwe L.: Chemical and microbiological corrosion tests on polymer modified concrete. 10th Int. Congress on Polymers in Concrete, 2001, Hawaii (CD).
  • [201] Muhua T., Wen Z., Keru W., Yiun-Yuan H.: The preparation of polymer cement mortar with acidic cationic polychlorobutadiene emulsion and the mechanism of its property modification. 5th Int. Congress on Polymers in Concrete, Brighton, 1987, s. 215-218.
  • [202J Nany E., Ukadike M., Souer J.: Optimum polymer contents in the concrete modified by liquid epoxy resins. ACI Publication SP-58, "Polymer in Concrete", 1978, s. 329-355.
  • [203] Nepomuceno A.A., Andrade C.: Study of protection capacity of polymeric based cement mortars against chloride and CO2 using electrochemical technique polarization resistance. 8th Int. Congress on Polymers in Concrete, Oostende, 1995, s. 233-238.
  • [204] Neville A.M.: Właściwości betonu. Polski Cement, Kraków, 2000.
  • [205] Nicholson J.W.: Chemia polimerów. WNT, Warszawa, 1996.
  • [206] Nutt W.O.: Polymer concrete comes of age. 4th Int. Congress on Polymers in Concrete, Darmstadt, 1984, s. 37-44.
  • [207] Ohama Y.: Adhesion durability of polymer-modified mortars through ten-year outdoor exposure. 3rd Int. Congress on Polymers in Concrete, Koriyama, 1981, s. 209-221.
  • [208] Ohama Y.: Recent research and development of concrete-polymer composites in Japan. 4th Int. Congress on Polymers in Concrete, Darmstadt, 1984, s. 21-28.
  • [209] Ohama Y.: Principle of latex modification and some typical properties of latex-modified mortars and concretes. ACI Materials J., 11-12, 1987, s. 511-518.
  • [210] Ohama Y.: New developments and environmental issues in concrete-polymer composites. 8th Int. Congress on Polymers in Concrete, Oostende, 1995, s. 27-34.
  • [211] Ohama Y.: Handbook of polymer-modified concrete and mortars; properties and process technology. Noyes Publications, Park Ridge, 1995.
  • [212] Ohama Y.: Polymer-based materials for repair and improved durability: Japanese experience. Construction and Building Materials, 1, 1996, s. 77-82.
  • [213] Ohama Y.: Polymer-based admixtures. Cement and Concrete Composites, 20, 1998, s. 189-212.
  • [214] Ohama Y.: Recent development of sustainable concrete-polymer composites in Japan. 4th Southern African Conf. on Polymers in Concrete, Johannesburg, 2000, s. 1-14.
  • [215] Ohama Y.: Recent research and development of sustainable concrete-polymer composites in Japan. 10th Int. Congress on Polymers in Concrete, 2001, Hawaii (CD).
  • [216] Ohama Y., Demura K.: Mix design system for polymer-modified concretes. RILEM Int. Congress "From Materials Science To Construction Materials Engineering", Versailles, 1987, vol. 2, s. 379-386.
  • [217] Ohama Y., Demura K.: Superior properties of epoxy-modified mortars and concretes without hardener. 3rd Southern African Conf. on Polymers in Concrete, Johannesburg, 1997, s. 240-249.
  • [218] Ohama Y., Demura K., Kim W.K.: Freeze-thaw durability of polymer-modified mortars using redispersible polymer powders. 8th Int. Congress on Polymers in Concrete, Ostende, 1995, s. 251-256.
  • [219] Ohama Y., Demura K., Kobayashi K., Satoh Y., Morikawa M.: Pore size distribution and oxygen diffusion resistance of polymer-modified mortars. Cement and Concrete Research, 2-3, 1991, s. 309-315.
  • [220] Ohama Y., Demura K., Miyake M.: Prediction of carbonation rate coefficient of-polymer-modified mortars. 8th Int. Congress on Polymers in Concrete, Oostende, 1995, s. 331-336.
  • [221] Ohama Y., Demura K., Ogi T.: Mix proportioning and properties of epoxy-modified mortars. 2nd Int. Symp. "Brittle Matrix Composites", Cedzyna, 1988, s. 516-525.
  • [222] Ohama Y., Demura K., Uchikawa H.: Interaction between epoxy resin and cement hydrates in epoxy-modified cementitious composites. JCA Proc. of Cement and Concrete, 49, 1995, s. 252-257.
  • [223] Ohama Y., Demura K., Watanabe M.: Feasibility study of polymer-modified pastes using rice husks for building materials. 9th Int. Congress on Polymers in Concrete, Bologna, 1998, s. 375-381.
  • [224] Ohama Y., Hashimoto H.: Drying shrinkage and compressive creep of polymer-modified concrete. Semento-Gijutsu-Nempo, 32, 1978, s. 308-311.
  • [225] Ohama Y., Kan S.: Effect of specimen size on strength and drying shrinkage of polymer-modified concretes. Int. J. of Cement Composites and Lightweight Concrete, 4, 1982, s. 339-343.
  • [226] Ohama Y., Masaki S., Shiroishida K.: Comparison of performance of polymer dispersions for cement modifiers. European Conf. on Building Materials, Lancaster, 1980, s. 97-105.
  • [227] Ohama Y., Miyake T.: Accelerated carbonation of polymer modified concrete. Trans. of Japan Concrete Institute, 2, 1980.
  • [228] Ohama Y., Nishimura T., Miyake T., Kan S.: Proposed mix proportioning of polymer-modified concrete. 3rd Int. Congress on Polymers in Concrete, Koriyama, 1981, s. 311-322.
  • [229] Okada K., Ohama Y.: Recent research and applications of concrete-polymer composites in Japan. 5th Int. Congress on Polymers in Concrete, Brighton, 1987, s. 13-21.
  • [230] Okba S., El-Dieb A., Reda M.: Evaluation of the corrosion resistance of latex modified concrete. Cement and Concrete Research, vol. 27, No 6, 1997, s. 861-868.
  • [231] Ollitrault-Fichet R., Gauthier C., Clamen G., Boch P.: Microstructural aspects in a polymer-modified cement. Cement and Concrete Research, vol. 28, No 12, 1998, s. 1687-1693.
  • [232] Osiecka E.: Wybrane zagadnienia z technologii mineralnych kompozytów budowlanych. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2000.
  • [233] Oye B.A., Justnes H.: Performance and microstructure of polymer cement mortars (PCC) based on epoxy resins. 6th Int. Congress on Polymers in Concrete, Shanghai, 1990, s. 210-217.
  • [234] Pacut A.: Prawdopodobieństwo - Teoria - Modelowanie probabilistyczne w technice. WNT, Warszawa, 1985.
  • [235] Papadopoulos C.: Balance of the PCC and the future tendency. 8th Int. Congress on Polymers in Concrete, Oostende, 1995, s. 93-97.
  • [236] Pera J., Ambroise J.: Influence of different polymers on the properties of cementitious matrices. 10th Int. Congress on Polymers in Concrete, 2001, Hawaii (CD).
  • [237] Piasta Z.: Metoda doboru optymalnych planów eksperymentów w badaniach technologicznych. Rozprawa doktorska, Politechnika Świętokrzyska, Kielce, 1978.
  • [238] Pielichowski J., Puszyński A.: Technologia tworzyw sztucznych. WNT, Warszawa, 1994.
  • [239] Popovics S.: Structural model approach to two-phase composite materials: State-of-the-Art. American Ceramic Society Bull., 11, 1969, s. 1060-1064.
  • [240] Popovics S.: New results with epoxy modification of portland cement concrete. 4th Int. Congress on Polymers in Concrete, Darmstadt, 1984, s. 369-373.
  • [241] Popovics S.: Strength loses of polymer-modified concretes under wet conditions. American Concrete Institute Special Publication SP-99, "Polymer Modified Concrete" (red. D.W. Fowler), 1987, s. 135-150.
  • [242] Popovics S.: Polymers for modification of PC concrete in USA. 7th Int. Congress on Polymers in Concrete, Moscow, 1992, s. 100-107.
  • [243] Popovics S., Tamas F.: Investigation on portland cement paste and mortars modified by the addition of epoxy. American Concrete Institute Special Publication SP-58, Detroit, 1978, s. 357-367.
  • [244] Puterman M., Bentur A., Soroka I.: Improved adhesion properties of polymer-modified and non-modified stucco. 6th Int. Congress on Polymers in Concrete, Shanghai, 1990, s. 288-291.
  • [245] Puterman M., Malorny W.: Some doubts and ideas on the microstructure formation of PCC. 9th Int. Congress on Polymers in Concrete, Bologna, 1998, s. 165-178.
  • [246] Radomski W.: Fibre reinforced concrete. Kanazawa University, Kanazawa, 1991.
  • [247] Ramachandran V.S.: Influence of superplasticizers on the hydration of cement. 3rd Int. Congress on Polymers in Concrete, Koriyama, 1981, s. 1333-1343.
  • [248] Ramakrishnan V.: Latex-modified concretes and mortars. Synthesis of Highway Practice, 179, 1992.
  • [249] Ramli M., Swamy R.N.: A rational mix design methodology for latex modified concrete. 3rd Southern African Conf. on Polymers in Concrete, Johannesburg, 1997, s. 259-279.
  • [250] Ray I., Gupta A.: Effect of latex and superplasticiser on portland cement mortar in hardened state. Cement & Concrete Composites, vol. 17, 1995, s. 9-21.
  • [251] Reda M.: Examining bond strength of latex modified concrete (LMC). 10th Int. Congress on Polymers in Concrete, 2001, Hawaii (CD).
  • [252] Rettvin A.: Styrene-butadiene copolymer: effects on mechanical properties and durability in high-strength concrete. 8th Int. Congress on Polymers in Concrete, Oostende, 1995, s. 625-630.
  • [253] RILEM Technical Committee 105 C-PC "Concrete-Polymer Composites": State-of-the-Art Report. Warszawa-Praha, 1996.
  • [254] Riley V., Razl I.: Polymer additives for cement composites. Composites, 1974, s. 27-33.
  • [255] Sahimi M.: Applications of percolation theory. Taylor & Francis, London-Bristol, 1994.
  • [256] Sakai E., Sugita J.: Composite mechanism of polymer modified cement. Cement and Concrete Research, vol. 25, No 1, 1995, s. 127-135.
  • [257] Sandrolini F.: Concrete polymer materials developments in Italy. 6th Int. Congress on Polymers in Concrete, Shanghai, 1990, s. 36-43.
  • [258] Sandrolini F., Saccani A., Motori A.: Influence of polymeric phase distribution on the mechanical properties of premix PCC materials. 7th Int. Congress on Polymers in Concrete, Moscow, 1992, s. 153-161.
  • [259] Satarchin A.F.: Cement polymer emulsion. Construction Publishing House, Moscow-Hanoi, 1970.
  • [260] Schneider S.I., DeWacker D.R., Palmer J.G.: Redispersible polymer powders for tough, flexible cement mortars. ASTM Special Technical Publication STP 1176: "Polymer-Modified Hydraulic-Cement Mixtures" (red. Louis A. Kuhlmann and D. Gerry Walters), ASTM, Philadelphia-Fredericksburg, 1993, s. 76-89.
  • [261] Schorn H.: Betone mit Kunststoffen und andere Instansetzungsbaustoffe. Ernst & Sohn Verlag, Berlin, 1990.
  • [262] Schorn H.: How to test efficiency of polymers in polymer cement concrete (PCC). 6th Int. Congress on Polymers in Concrete, Shanghai, 1990, s. 799-805.
  • [263] Schorn H., Schiekel M.: Shape and distribution of polymer particles in PCC investigated by Environmental Scanning Electron Microscope (ESEM). 10th Int. Congress on Polymers in Concrete, Hawaii, 2001 (CD).
  • [264] Schulze J.: Dispersion powder in cement. 4th Int. Congress on Polymers in Concrete, Darmstadt, 1984, s. 103-107.
  • [265] Schulze J.: Thermoplastische Polymere - Modifizierung von Mörteln und Beton. Beton, 41, 1991, s. 232-237.
  • [266] Schulze J., Killermann O.: Long-term performance of redispersible powders in mortars. Cement and Concrete Research, 31, 2001, s. 357-362.
  • [267] Schwamborn B., Fiebrich M.: Crack-bridging behaviour of protective coatings subjected to natural weathering. In: Protection of concrete. Proc. of Int. Conf. held at Dundee, E & FN Spon, London, 1990, s. 245-255.
  • [268] Schwarz S.: Research of structures of polymer-modified mortars. 4th Int. Congress on Polymers in Concrete, Darmstadt, 1984, s. 483-485.
  • [269] Scrivener K.L., Gariner E.M.: Microstructural gradients in cement paste around aggregate particles. Materials Research Symposium Proc., 114, 1988, s. 77-85.
  • [270] Semerad E., Kremnitzer P., Lacom W., Holub F., Sattler P.: Polymer modified mortar: influence of polymer addition on macroscopic and microscopic properties. 5th Int. Congress on Polymers in Concrete, Brighton, 1987, s. 223-228.
  • [271] Shah S.P., Sankar R.: Internal cracking and strain-softening response of concrete under uniaxial compression. ACI Materials J., 3, 1987, s. 200-212.
  • [272] Shaker F., El-Dieb A., Reda M.: Durability of styrene-butadiene latex modified concrete. Cement and Concrete Research, vol. 27, No 5, 1997, s. 711-720.
  • [273] Shi Z.-Q., Chung D.D.L.: Improving the abrasion resistance of mortar by adding latex and carbon fibers. Cement and Concrete Research, vol. 27, No 8, 1997, s. 1149-1153.
  • [274] Silva D., John V., Ribeiro J., Roman H.: Pore size distribution of hydrated cement pastes modified with polymers. Cement and Concrete Research, 31, 2001, s. 1177-1184.
  • [275] Silva D.A., Roman H.R., Gleize P.J.P.: Evidences of chemical interaction between EVA and hydrating Portland cement. Cement and Concrete Research, 9, 2002, s. 1383-1390.
  • [276] Smythe R.T., Wierman J.C.: First-passage percolation on the square lattice. Series: Lecture notes in mathematics No 671. Springer-Verlag, Berlin-New York, 1978.
  • [277] Soroushian P., Tlili A.: Effects of latex modification on the failure mechanism and engineering properties of concrete. ASTM Special Technical Publication STP 1176: Polymer-Modified Hydraulic-Cement Mixtures (red. Louis A. Kuhlmann and D. Gerry Walters), ASTM, Philadelphia-Fredericksburg, 1993, s. 104-119.
  • [278] Sprinkel M.M.: Twenty-year performance of latex-modified concrete overlays. ASTM Special Technical Publication STP 1176: Polymer-Modified Hydraulic-Cement Mixtures (red. Louis A. Kuhlmann and D. Gerry Walters), ASTM, Philadelphia-Fredericksburg, 1993, s. 141-154.
  • [279] Spychaj T., Spychaj S.: Farby i kleje wodorozcieńczalne. WNT, Warszawa, 1996.
  • [280] Su Z.: Microstructure of polymer-cement concrete. Delft University Press, Delft, 1995.
  • [281] Su Z., Bijen J.M., Larbi J.A.: Influence of polymer modification on the hydration of portland cement. Cement and Concrete Research, 21, 1991, s. 535-544.
  • [282] Su Z., Larbi J.A., Bijen J.M.: The interface between polymer-modified cement paste and aggregates. Cement and Concrete Research, 21, 1991, s. 983-990.
  • [283] Sugama T., Kukacka L.E., Carciello N., Hocher N.J.: Study of interactions at water-soluble polymer/Ca(OH)2 or gibbsite interfaces by XPS. Cement and Concrete Research, 6, 1989, s. 857-867.
  • [284] Sugama T., Kukacka L., Horn W.: Catalytic effect of a portland cement filler on the cure of water-compatible resorcinol phenol-formaldehyde polymer concrete. J. of Applied Polymer Science, 26, 1981, s. 1453-1463.
  • [285] Sujata K., Bijen J., Jennings H., Su Z., Fraaij A.: The evolution of the microstructure in styrene acrylate polymer-modified cement pastes at the early stage of cement hydration. Advanced Cement Based Materials, vol. 3, No 3-4, 1996, s. 87-93.
  • [286] Sun P., Mawy E., Sauer J.: Properties of epoxy-cement concrete system. J. of American Concrete Institute, 11, 1975.
  • [287] Sun P., Sauer J., Mawy E.: Properties of epoxy-cement mortar systems. Material Science and Engineering, 18, 1975, s. 85-95.
  • [288] Surface Coatings. Vol. 1: Raw materials and their usage. TAFE, Educational Books, Randwick, 1983.
  • [289] Sustersic J., Ukrainczyk V., Zajc A., Sajna A.: Evaluation of post-crack behaviour of polymer cement steel fibre reinforced concrete (PC-SFRC). 9th Int. Congress on Polymers in Concrete, Bologna, 1998, s. 409-417.
  • [290] Swamy R.N.: Durability of concrete composites with polymers. 8th Int. Congress on Polymers in Concrete, Oostende, 1995, s. 21-26.
  • [291] Swamy R.N., Nagao H.: Some durability properties of polymer-modified mortars. 8th Int. Congress on Polymers in Concrete, Oostende, 1995, s. 257-262.
  • [292] Szlezyngier W.: Tworzywa sztuczne. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 1996.
  • [293] Szücs E.: Modelowanie matematyczne w fizyce i technice. WNT, Warszawa, 1977.
  • [294] Szwabowski J.: Reologia mieszanek na spoiwach cementowych. Wydawnictwo Politechniki Śląskiej, Gliwice, 1999.
  • [295] Śliwiński J.: Betony impregnowane polimerami. Zeszyty Naukowe Politechniki Krakowskiej nr 2, 1983.
  • [296] TC 113-CPT PCM Standards. RILEM TC 113 Int. Symposium "Test Methods for Concrete-Polymer Composites", Oostende, 1995, s. 167-211.
  • [297] Teichmann H.: Polymer dispersions for cement and concrete. lst Int. Congress on Polymers in Concrete, London, 1975, s. 112-124.
  • [298] Tsai M.-C., Burch M.J., Lavelle J.A.: Solid grade acrylic cement modifiers. ASTM Special Technical Publication STP 1176: Polymer-Modified Hydraulic-Cement Mixtures (red. Louis A. Kuhlmann and D. Gerry Walters), ASTM, Philadelphia-Fredericksburg, 1993, s. 63-75.
  • [299] Tschegg E.K., Ingruber M., Surberg C.H., Munger F.: Factor influencing fracture behavior of old-new concrete bonds, ACI Materials J., 97-M52, 2000, s. 447-453.
  • [300] Van Gemert D.: Research and development in design and application of Concrete-Polymer Composites in Europe. 4th Asia Symposium on Polymers in Concrete - ASPIC'2003, Chuncheon, Korea, 2003, s. 17-29.
  • [301] Van Gemert D., Czarnecki L., Maultzsch M., Schorn H., Beeldens A., Łukowski P., Knapen E.: Cement concrete and concrete-polymer composites: Two merging worlds. Cement and Concrete Composites, 9-10, 2005, s. 926-933.
  • [302] Vekey de R.C.: The properties of polymer-modified cement pastes. 1st Int. Congress on Polymers in Concrete, London, 1975, s. 97-104.
  • [303] Venancio C.M.P., Bordado J.C.M.: Tailoring concrete properties - concrete flexibilisation with polymers. 5th Int. Congress on Polymers in Concrete, Brighton, 1987, s. 91-97.
  • [304] Wagner H.: Compressive strength of polymer-modified-hydraulic cements. Industrial and Engineering Chemistry, 2, 1966, s. 146-152.
  • [305] Wagner H., Greenley D.: Interphase effects in polymer-modified hydraulic cements. J. of Applied Polymer Science, 22, 1978, s. 813-822.
  • [306] Walters D.G.: VAE redispersible-powder hydraulic-cement admixtures. Concrete International, 4, 1992.
  • [307] Walters D.G.: The effect of polymer variables and other parameters on the properties of polymer-modified cement mixtures. ASTM Special Technical Publication STP 1176: Polymer-Modified Hydraulic-Cement Mixtures (red. Louis A. Kuhlmann and D. Gerry Walters), ASTM, Philadelphia-Fredericksburg, 1993, s. 6-18.
  • [308] Waterborne coatings. In: Epoxy resins. Chemistry & Technology (red. May C.A.), M. Dekker Inc., New York, 1988.
  • [309] Whiting D., Kuhlmann L.: Curing and chloride permeability. Concrete International, 4, 1987, s. 18-62.
  • [310] Xiufeng G., Ying A., Lixin C., Menling S.: A study on interpenetrating polymer cement network of the new polymer concrete. 7th Int. Congress on Polymers in Concrete, Moscow, 1992, s. 178-183.
  • [311] Xu A., Chandra S., Aavik J.: Influence of polymer on cement mortar containing condensed silica fume and superplasticizer. 6th Int. Congress on Polymers in Concrete, Shanghai, 1990, s. 304-311.
  • [312] Ye Z.: Research on the mechanical behaviour of reactive unsaturated polyester cement materials. 7th Int. Congress on Polymers in Concrete, Moscow, 1992, s. 219-225.
  • [313] Ye Z.: Research on the structure of reactive unsaturated polyester cement materials. 8th Int. Congress on Polymers in Concrete, Oostende, 1995, s. 57-62.
  • [314] Yiua-Yuan H.: Polymerizing the concrete. 6th Int. Congress on Polymers in Concrete, Shanghai, 1990, s. 3-9.
  • [315] Zajc A., Korla J.: Freeze-thaw resistance with and without de-icing salts of polymer cement concrete. 8th Int. Congress on Polymers in Concrete, Oostende, 1995, s. 245-250.
  • [316] Zeng S., Short C.L., Page C.L.: Early-age hydration kinetics of polymer-modified cement. Advanced Cement Research 8, 1996, s. 1-9.
  • [317] Zhenping L., Zhongjian S., Chengmou F.: The chemical reactions between acrylate copolymer and calcium hydroxide from concrete. 6th Int. Congress on Polymers in Concrete, Shanghai, 1990, s. 193-198.
  • [318] Zhiyuan C., Qinghua C., Ting C.: Influences of PAA on cement composite. 6th Int. Congress on Polymers in Concrete, Shanghai, 1990, s. 312-317.
  • [319] Zhong S., Wang P., Zhiyuan C.: Study of the micro-morphology structure of the polymer-modified mortars and concretes. 4th Asia Symp. on Polymers in Concrete - ASPIC'2003, Chuncheon, Korea, 2003, s. 195-201.
  • [320] Zimbelmann R.: The problem of increasing the strength of concrete. Betonwerk und Fertigkeit-Technik, 2, 1978, s. 89-96.
  • [321] Zivica V.: The properties of cement phase with admixture of PVA emulsion. RILEM Bulletin, 28, 1965, s. 121-128.
  • [322] Zoumut H.F.: Flexible cementitious products. ASTM Special Technical Publication STP 1176: Polymer-Modified Hydraulic-Cement Mixtures (red. Louis A. Kuhlmann and D. Gerry Walters), ASTM, Philadelphia-Fredericksburg, 1993, s. 19-33.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0020-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.