PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mikrobiologiczne procesy usuwania metali ze ścieków i szlamów galwanizerskich

Autorzy
Identyfikatory
Warianty tytułu
EN
Microbiological processes of metals removal from galvanic wastewater and sludge
Języki publikacji
PL
Abstrakty
PL
Przedmiotem niniejszej pracy było opracowanie mikrobiologicznej metody usuwania metali ciężkich ze ścieków i szlamów galwanizerskich za pomocą biosorpcji/bioługowania. Określono możliwość eliminacji wybranych metali ze ścieków galwanizerskich przy zastosowaniu biosorbentu w postaci nadmiernego osadu czynnego, uzyskując dla poszczególnych metali efektywność biosorp-cji na poziomie 60-99%. Skuteczność biotugowania metali zaadsorbowanych w osadzie zależała od rodzaju metalu. Zastosowanie czynników wspomagających, w postaci doszczepiania aktywną mikroflorą i wstępnego zakwaszania ługowanego osadu, pozwoliło na zwiększenie skuteczności bioługowania zaadsorbowanych metali odpowiednio o 30% i 100-500%. Przeprowadzono również proces usuwania metali ze szlamów pogalwanicznych, przy zastosowaniu bakterii auto- i heterotro-ficznych. Podjęto próbę zwiększenia efektywności procesu bioługowania przez modyfikację składu roztworów ługujących oraz adaptację mikroorganizmów uczestniczących w procesie, uzyskując 2-5-krotny wzrost ilości usuniętych metali. Zastosowana w pracy metoda pozwoliła na wyługowanie ze szlamu pogalwanicznego 45-100% takich metali, jak: miedź, ołów, cynk i chrom. Wykazano przydatność testów enzymatycznych oraz badań zawartości ATP do biologicznej kontroli procesu bioługowania metali ze szlamów. Identyfikacji aktywnych szczepów bakterii dokonano z wykorzystaniem techniki PCR. Na podstawie uzyskanych rezultatów badań skonstruowano prototypowy bioreaktor w skali ułamkowo-technicznej, który przetestowano z wykorzystaniem wybranych ścieków galwanizerskich.
EN
The aim of this study was to research the microbiological method of heavy metals removal from galvanic wastewater and sludge by biosorption/bioleaching processes. The capability of heavy metals biosorption in activated sludge biomass was determined and the effectiveness of the process reached about 60-99%. The amounts of the leached metals depended on the type of metal. A significant improvement of the process was achieved by additional inoculation with active microorganisms and preliminary acidification of the bioleaching solution (the biolea-ching results were 30% and 100-500% higher respectively). Heavy metals removal from galvanic sludge was accomplished using autotrophic and heterotrophic microorganisms. A modification of the leaching solution content and preliminary adaptation of bioleaching bacteria allowed to increase the effectiveness of the process by 200-500%. Maximum amounts of copper, lead, zinc and chromium removed from galvanic sludge ranged from 45% to 100% for respective metals. Enzymatic tests and ATP content determination proved to be suitable controlling procedures for the heavy metals bioleaching process. Active bacterial strains were isolated and identified with the use of the PCR technique. The results obtained allowed to design and construct a prototype bioreactor for the biosorption/bioleaching process that was successfully tested on galvanic wastewater.
Rocznik
Tom
Strony
3--139
Opis fizyczny
Bibliogr. 270 poz., rys., tab., wykr.
Twórcy
autor
  • Instytut Systemów Inżynierii Środowiska, Wydział Inżynierii Środowiska, Politechnika Warszawska
Bibliografia
  • 1. Acar S., Brierley J.A., Wan R.Y.: Conditions for bioleaching a covellite-bearing ore. Hydrometallurgy, 77, 3-4: 239-246, 2005.
  • 2. Acevedo F.: Present and future of bioleaching in developing countries. EJB Electronic Journal of Biotechnology, 5, 2: 196-199, 2002.
  • 3. Ahluwalia S.S., Goyal D.: Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98: 2243-2257, 2007.
  • 4. Alloway B.J., Ayres D.C.: Chemiczne podstawy zanieczyszczenia środowiska. PWN, Warszawa 1999.
  • 5. Anaerobic Bioleaching Technology for Metals Release. Mining Project Fact Sheet. Office of Industrial Technologies Energy Efficiency and Renewable Energy U.S. Department of Energy, Washington. DOE/GO-102000-1138 Order I-MI-January 2001.
  • 6. Anderson B.C., Brown A.T.F., Watt W.E., Marsalek J.: Biological leaching of trace metals from stormwater sediments: influential variables and continuous reactor operation. Water Science and Technology, 38, 10: 73-81, 1998.
  • 7. Anielak A., Cieślik G.: Analiza studialna metod oczyszczania ścieków potrawiennych i galwanicznych. II Ogólnopolska Konferencja Naukowa "Kompleksowe i szczegółowe problemy inżynierii środowiska" Częstochowa-Ustronie Morskie, 1987.
  • 8. Atkinson B.W., Bux F., Kasan H.C: Waste acivated sludge remediation of metal plating effluents. Water SA, 24, 4: 355-359, 1998.
  • 9. ATTC Culture Media. Culture and Strain Data Collections. ATTC Catalogs. Baza internetowa.
  • 10. Aung K.M.M., Ting Y.-P.: Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger. Journal of Biotechnology, 116: 159-170, 2005.
  • 11. Bacelar-Nicolau P., Johnson, D.B.: Leaching of pyrite by acidophilic heterotrophic iron-oxidizig bacteria in pure and mixed cultures. Applied and Environmental Microbiology, 65, 2: 585-590, 1999.
  • 12. Baker J.B., Banfield J.F.: Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44: 139-152, 2003.
  • 13. Banat I.M., Makkar R.S., Cameotra S.S.: Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology, 53: 495-508, 2003.
  • 14. Barette J., Champagne C.P., Roy D., Rodrigue N.: The production of mixed cultures containing strains of Lactococcus lactis, Leuconostoc cremoris and Lactobacillus rhamnosus on commercial starter media. Journal of Industrial Microbiology and Biotechnology, 25: 288-297, 2000.
  • 15. Bednarik V., Vondruska M., Koutny M.: Stabilization/solidification of galvanic sludges by asphalt emulsions. Journal of Hazardous Materials B122: 139-145, 2005.
  • 16. Bednarski W., Adamczak M.: Biotechnologiczne metody otrzymywania związków powierzchniowo aktywnych. Część II. Synteza związków powierzchniowo aktywnych przez mikroorganizmy. Biotechnologia, 4, 47: 24-41, 1999.
  • 17. Benner S.G., Gould W.D., Blowes D.W.: Microbial populations associated with generation and treatment of acid mine drainage. Chemical Geology, 169: 435-448, 2000.
  • 18. Bento F.M., Gaylarde C.C.: The Production of Interfacial Emulsions by Bacterial Isolates from Diesel Fuels. International Biodeterioration and Biodegradation, 38, 1: 31-33, 1996.
  • 19. Bermond A., Ghestem J.P.: Kinetic Study of Trace Metal EDTA - Desorption from Contaminated Soils. In: Heavy Metals Release in Soils. Selim H.M., Sparks D.L. (ed.), Lewis Publishers, CRC Press LLC, Boca Raton, London, New York, Washigton 2001.
  • 20. Bickers P.O., Chong R.C., Bhamidimarri R., Killick M.G.: Bioleaching of metals from sludges and acid production under increased metal concentrations. Water Science and Technology, 48, 8: 169-176, 2003.
  • 21. Bioleaching. Dane z Rai Courseware, Rai Foundation Colleges, Rai University.
  • 22. Blais J.F., Tyagi R.D., Auclair J.C.: Bioleaching of metals from sewage sludge: microorganisms and growth kinetics. Water Research, 27, 1: 101-110, 1993.
  • 23. Bolton H.: The Role of Chelates in Metal and Radionuclide Mobilization. Workshop Report: Combined Chemical and Microbiological Approaches to Remediating Metal and Radionuclide Contaminants, Dulles Airport Marriott, Virginia 1999.
  • 24. Bosecker K.: Bioleaching: Metal solubilization by microorganisms. FEMS Microbiology Reviews, 20, 3-4: 591-604, 1997.
  • 25. Bosecker K.: Microbial leaching in environmental clean-up programmes. Hydrometallurgy, 59: 245-248, 2001.
  • 26. Brandl H., Bosshard R., Wegmann M.: Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy, 59: 319-326, 2001.
  • 27. Breed A.W., Hansford G.S.: Studies on the mechanism and kinetics of bioleaching. Minerals Engineering, 12, 4: 383-392, 1999.
  • 28. Brierley C.L.: Bacterial succesion in bioheap leaching. Hydrometalurgy, 59: 249-255, 2001.
  • 29. Brombacher C., Bachofen R., Brandl H.: Biohydrometallurgical processing of solids: a patent review. Applied Microbiology and Biotechnology, 48: 577-587, 1997.
  • 30. Brombacher C., Bachofen R., Brandl H.: Development of a Laboratory-Scale Leaching Plant for Metal Extraction from Fly Ash by Thiobacillus Strains. Applied and Environmental Microbiology, 14, 4: 1237-1241, 1998.
  • 31. Bullock C.: The Archaea - a biochemical perspective. Biochemistry and Molecular Biology Education, 28: 186-191, 2000.
  • 32. Burckhard S.R., Schwab A.P., Banks M.K.: The effects of organic acids on the leaching of heavy metals from mine tailings. Journal of Hazardous Materials, 41: 135-145, 1995.
  • 33. Busscher H.J., Neu T.R., van der Mei H.C.: Biosurfactant production by thermophilic dairy streptococci. Applied Microbiology and Biotechnology, 41, 1: 4-7, 1994.
  • 34. Bux F., Atkinson B., Kasan H.C.: Zinc biosorption by waste activated and digested sludges. Water Science and Technology, 39, 10-11: 127-130, 1999.
  • 35. Cabrera G., Gómez J.M., Cantero D.: Influence of heavy metals on growth and ferrous sulphate oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures. Process Biochemistry, 40: 2683-2687, 2005.
  • 36. Castro I.M., Fietto J.L.R., Vieira R.X., Trópia M.J.M., Campos L.M.M., Paniago E.B., Brandao R.L.: Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures. Hydrometallurgy, 57: 39-49, 2000.
  • 37. Chan L.C., Gu X.Y., Wong J.W.C.: Comparison of bioleaching of heavy metals from sewage sludge using iron- and sulfur oxidizing bacteria. Advances in Environmental Research, 7: 603-607, 2003.
  • 38. Chartier M., Mercier G., Blais J.F.: Partitioning of trace metals before and after biological removal of metals from sediments. Water Research, 35, 6: 1435-1444, 2001.
  • 39. Chen S.Y., Lin J.G.: Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air lift bioreactor: effects of sulfur concentration. Water Research, 38: 3205-3214, 2004(a).
  • 40. Chen S.Y., Lin J.G.: Bioleaching of heavy metals from livestock sludge by indigenous sulfur oxidizing bacteria: effects of sludge solids concentration. Chemosphere, 54: 283-289, 2004(b).
  • 41. Chen S.Y., Lin J.G.: Bioleaching of heavy metals from sediment: significance of pH. Chemosphere 44: 1093-1102, 2001.
  • 42. Chen Y.X., Hua Y.M., Zhang S.H., Tian G.M.: Transformation of heavy metal forms during sewage sludge bioleaching. Journal of Hazardous Materials, 123, 1-3: 196-202, 2005.
  • 43. Chipasa K.B.: Accumulation and fate of selected heavy metals in a biological wastewater treatment system. Waste Management, 23: 135-143, 2003.
  • 44. Chmielewski A.G., Urbański T.S., Migdał W.: Separation technologies for metal recovery from industrial wastes. Hydrometallurgy, 45, 3: 333-344, 1997.
  • 45. Cho K.S., Ryu H.W., Lee I.S., Choi H.M.: Effect of solids concentration on bacterial leaching of heavy metals from sewage sludge. Journal of the Air and Waste Management Association, 52, 2: 237-243, 2002.
  • 46. Christofi N., Ivshina I.B.: Microbial surfactants and their use in field studies of soil remediation. Journal of Applied Microbiology, 93, 6: 915-929, 2002.
  • 47. Chu C.P., Lee D., Chang B-V, Liao C.S.: Using ATP Bioluminescence Technique for Monitoring Microbial Activity in Sludge. Biotechnology and Bioengineering, 75, 4: 469-474, 2001.
  • 48. Cioffi R., Lavorgna M., Santoro L.: Environmental and technological effectiveness of a process for the stabilization of a galvanic sludge. Journal of Hazardous Materials, B89: 165-175, 2002.
  • 49. Clark M.E., Batty J.D., van Burren C.B., Dew D.W., Eamon M.A.: Biotechnology in minerals processing: technological breakthrougs creating value. Hydrometallurgy, 83: 3-9, 2006.
  • 50. Curutchet G., Donati E.: Iron-Oxidizing and Leaching Activities of Sulphur-Grown Thiobacillus ferrooxidans Cells on Other Substrates: Effect of Culture pH. Journal of Bioscience and Bioengineering, 90, 1: 57-61, 2000.
  • 51. Cwalina B., Ledakowicz S., Fischer H.: Wpływ regulacji pH układu ługującego na przebieg chemicznej bakteryjnej ekstrakcji niklu z pentlandytu. Fizykochemiczne Problemy Mineralurgii, 32: 125-133, 1998.
  • 52. D'Hugues P., Foucher S., Gallé-Cavalloni P., Morin D.: Continuous bioleaching of chalcopyrite using a novel extremely thermophilic mixed culture. International Journal of Mineral Processing, 66: 107-119, 2002.
  • 53. Das T., Ayyappan S., Chaudhury G.R.: Factors affecting bioleaching kinetics of sulfide ores using acidophilic micro-organisms. BioMetals, 12, 1: 1-10, 1999.
  • 54. De Wulf-Durand, Bryant L.J., Sly L.I.: PCR - Mediated Detection of Acidophilic Bioleaching-Associated Bacteria. Applied and Environmental Microbiology, 63, 7: 2944-2948, 1997.
  • 55. Deveci H., Akcil A., Alp I.: Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: comparative importance of pH and iron. Hydrometallurgy, 73: 293-303, 2004.
  • 56. Deveci H.: Effect of particle size and shape of solids on the viability of acidophilic bacteria during mixing in stirred tank reactors. Hydrometallurgy, 71: 385-396, 2004.
  • 57. Deveci H.: Effect of solids on viability of acidophilic bacteria. Minerals Engineering, 15: 1181-1189, 2002.
  • 58. Dexter S.J., Cámara M., Davies M., Shakesheff K.M.: Development of a bioluminescent ATP assay to quantify mammalian and bacterial cell number from a mixed population. Biomaterials, 24: 27-34, 2003.
  • 59. Donati E., Pogliani C., Boiardi J.L.: Anaerobic leaching if covellite by Thiobacillus ferrooxidans. Applied Microbiology and Biotechnology, 47: 636-639, 1997.
  • 60. Dopson M., Baker-Austin C., Hind A., Bowman J.P., Bond P.L.: Characterization of Ferroplasma Isolates and Ferroplasma acidarmanus sp. nov., Extreme Acidophiles from Acid Mine Drainage and Industrial Bioleaching Environments. Applied and Environmental Microbiology, 70, 4: 2079-2088, 2004.
  • 61. Dopson M., Baker-Austin C., Koppineedi P.R., Bond P.L.: Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic microorganisms. Microbiology, 149: 1959-1970, 2003.
  • 62. Doyle F. M. : Teaching and learning environmental hydrometallurgy. Hydrometallurgy, 79: 1-14, 2005.
  • 63. Dresher W.H.: Producing Copper Nature's Way: Bioleaching. Copper Applications in Mining and Extraction Innovations, May 2004.
  • 64. Du Plessis C.A., Barnard P., Naldrett K., de Kock S.H.: Development of respirometry methods to assess the microbial activity of thermophilic bioleaching archaea. Journal of Microbiological Methods, 47: 189-198, 2001.
  • 65. Dwivedy K.K., Mathur A.K.: Bioleaching-our experience. Hydrometallurgy, 38: 99-109, 1995.
  • 66. Dyrektywa Rady UE z dn. 12 grudnia 1991 w sprawie odpadów niebezpiecznych. 91/689/EWG zmieniona dyrektywą Rady 94/31/WE.
  • 67. Edwards K.J., Schrenk M.O., Hamers R., Banfield J.F.: Microbial oxidation of pyrite: Experiments using microorganisms from am extreme acidic environment. American Mineralogist, 83: 1444-1453, 1998.
  • 68. Ehrlich H.L.: Past, present and future of biohydrometallurgy. Hydrometallurgy, 59: 127-134, 2001.
  • 69. Eisler R.: Handbook of Chemical Risk Assessment Health Hazards to Humans, Plants and Animals. Vol. 1. Metals. Lewis Publishers, CRC Press LLC, 2000.
  • 70. Elzeky M., Attia Y.A.: Effect of bacterial adaptation on kinetics and mechanisms of bioleaching ferrous sulfides. The Chemical Engineering Journal, 56: 115-124, 1995.
  • 71. Environmental aspects of the metal finishing industry. A Technical Guide. United Nations Environmental Programme, 1989.
  • 72. Escobar B.M., Godoy I.R.: Enumeration of Acidithiobacillus ferrooxidans adhered to agglomerated ores in bioleaching processes. World Journal of Microbiology and Biotechnology, 18: 875-879, 2002.
  • 73. Escobar B.M., Godoy I.R.: Enumeration of iron-oxidizing bacteria by the membrane filter technique. World Journal of Microbiology and Biotechnology, 17: 395-397, 2001.
  • 74. Ettler V., Komárková M., Jehlička J., Coufal P., Hradil D., Machovič V., Delorme F.: Leaching of lead metallurgical slag in citric solutions-implications for disposal and weathering in soil environments. Chemosphere, 57: 567-577, 2004.
  • 75. Faramarzi M.A., Stagars M., Pensini E., Krebs W., Brandl H.: Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. Journal of Biotechnology, 113: 321-326, 2004.
  • 76. Filali-Meknassi Y., Tyagi R.D., Narasiah K.S.: Simultaneous sewage sludge digestion and metal leaching: effect of aeration. Process Biochemistry, 36: 263-273, 2000.
  • 77. Fischer R., Seidel H., Rahner D., Morgenstern P., Löser C.: Elimination of Heavy Metals from Process Waters of the Bioleaching Process by Electrolysis. Journal of Soils and Sediments, 2, 4: 166-168, 2002.
  • 78. Foster A.L., Ashley R.P., Rytuba J.J.: Identification and distribution of arsenic species in an iron-oxidizing microbial mat community. International Conference on Heavy Metals in the Environment, Ann Arbor, 6-10 August 2000.
  • 79. Fournier D., Lemieux R., Couillard D.: Essential interactions between Thiobacillus ferrooxidans and heterotrophic microorganisms during a wastewater sludge bioleaching process. Environmental Pollution, 101: 303-309, 1998.
  • 80. Fowler T.A., Crundwell F.K.: Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Bacterial Oxidation of the Sulfur Product Layer Increases the Rate of Zinc Sulfide Dissolution at High Concentrations of Ferrous Ions. Applied and Environmental Microbiology, 65, 12: 5285-5292, 1999.
  • 81. Franzmann P.D., Haddad C.M., Hawkes R.B., Robertson W.J., Plumb J.J.: Effects of temperature on the rates of iron and sulfur oxidation by selected Bacteria and Archaea: application of the Ratkowsky equation. Mineral Engineering, 18: 1304-1314, 2005.
  • 82. Fytianos K., Charantoni E., Voudrias E.: Leaching of heavy metals from municipal sewage sludge. Environment International, 24, 4: 467-475, 1998.
  • 83. Gadd G.M.: Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Current Opinion in Biotechnology, 11: 271-279, 2000.
  • 84. Gikas P., Livingston A.G.: Use of ATP to characterize biomass viability in freely suspended and immobilized cell bioreactors. Biotechnology and Bioengineering, 42, 11: 1337-1351, 1993.
  • 85. Gleisner M., Herbert R.B. Frogner Kockum P.C.: Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen. Chemical Geology, 225: 16-29, 2006.
  • 86. Goebel B.M., Stackebrandt E.: Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Applied and Environmental Microbiology, 60, 5: 1614-1621, 1994.
  • 87. Gourdon R., Funtowicz N.: Kinetic model of elemental sulfur oxidation by Thiobacillus thiooxidans in batch slurry reactors. Bioprocess Engineering, 18: 241-249, 1998.
  • 88. Grewal H.S., Kalra K.L: Fungal production of citric acid. Biotechnology Advances, 13, 2: 209-234, 1995.
  • 89. Groudev S., Spasova I., Schutte R.: Two-stage microbial leaching of copper and precious metals from a sulphide ore. Annual of the University of Mining and Geology "St. Ivan Rilski", 44-45, part II, Mining and Mineral Processing, Sofia 2002.
  • 90. Gu X., Wong J.W.C.: Identification of Inhibitory Substances Affecting Bioleaching of Heavy Metals from Anaerobically Digested Sewage Sludge. Environmental Science and Technology, 38, 10: 2934-2939, 2004.
  • 91. Haddadin J., Dagot C., Fick M.: Models of bacterial leaching. Enzyme and Microbial Technology, 17: 290-305, 1995.
  • 92. Hansford G.S., Vargas T.: Chemical and electrochemical basis of bioleaching processes. Hydrometallurgy, 59: 135-145, 2001.
  • 93. Hatzikioseyian A., Tsezos M.: Modelling of microbial stoichiometry: application in bioleaching processes. Hydrometallurgy, 83: 29-34, 2006.
  • 94. Hawari A.H., Mulligan C.N.: Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass. Bioresource Technology, 97: 692-700, 2006.
  • 95. Healy M.G., Devine C.M., Murphy R.: Microbial production of biosurfactants. Resources, Conservation and Recycling, 18: 41-57, 1996.
  • 96. Horiuchi J.-I., Ebie K., Tada K., Kobayashi M., Kanno T.: Simplified method for estimation of microbial activity. Bioresource Technology, 86: 95-98, 2003.
  • 97. Hujanen M., Linko S., Linko Y.-Y., Leisola M.: Optimisation of media and cultivation conditions for L(+)(S)-lactic acid production by Lactobacillus casei NRRL B-441. Applied Microbiology and Biotechnology, 56: 126-130, 2001.
  • 98. Hutchins S.R., Davidson M.S., Brierley J.A., Brierley C.L.: Microorganisms in reclamation of metals. Annual Review of Microbiology, 40: 311-336, 1986.
  • 99. Hysert D.W., Knudsen F.B., Morrison N.M., van Gheluwe G., Lom T.: Application of a bioluminescence ATP assay in brewery wastewater treatment studies. Biotechnology and Bioengineering, 21, 7: 1301-1314, 1979.
  • 100. Impellitteri C.A., Allen H.E., Yin Y., Yon S.-J., Saxe J.K.: Soil Properties Controlling Metal Partitioning. In: Heavy Metals Release in Soils. Selim H.M., Sparks D.L. (ed.), Lewis Publishers, CRC Press LLC, Boca Raton, London, New York, Washigton 2001.
  • 101. Ishigaki T., Nakanishi A., Tateda M., Ike M., Fujita M.: Bioleaching of metal from municipal waste incineration fly ash using a mixed culture of sulfur-oxidizing and iron-oxidizing bacteria. Chemosphere, 60: 1087-1094, 2005.
  • 102. Ito A., Umita T., Aizawa J., Kitada K.: Effect of inoculation of iron oxidizing bacteria on elution of copper from anaerobically digested sewage sludge. Water Science and Technology, 38, 2: 63-70, 1998.
  • 103. Jandova J., Štefanova T., Niemczykova R.: Recovery of Cu-concentrates from waste galvanic copper sludges. Hydrometallurgy, 57: 77-84, 2000.
  • 104. Johnson D.B., Hallberg K.B.: The microbiology of acidic mine waters. Research in Microbiology, 154: 466-473, 2003.
  • 105. Johnson D.B., Rolfe S., Hallberg K.B., Iversen E.: Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Environmental Microbiology, 10, 3: 630-637, 2001.
  • 106. Johnson D.B.: Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiology Ecology, 27: 307-317, 1998.
  • 107. Johnson D.B.: Importance of microbial ecology in the development of new mineral technologies. Hydrometallurgy, 59: 147-157, 2001.
  • 108. Johnson D.B.: Selective solid media for isolating and enumerating acidophilic bacteria. Journal of Microbiological Methods, 23, 2: 205-218, 1995.
  • 109. Jorgensen P.E., Eriksen T., Jensen B.K.: Estimation of viable biomass in wastewater and activated sludge by determination of ATP, oxygen utilization rate and FDA hydrolysis. Water Research, 26: 1495-1501, 1992.
  • 110. Kańska Z., Łebkowska M., Peszta J.: Aktywność enzymatyczna biocenozy błon biologicznych złoża obrotowego w obecności metali ciężkich. W: Metale i ich wpływ na biocenozy wodne. Red. Z. Kańska. Wydawnictwa Politechniki Warszawskiej, Warszawa 1992.
  • 111. Kar R.N., Sukla L.B., Swamy K.M., Panchanadikar V.V., Narayana K.L.: Bioleaching of Lateritic Ore by Ultrasound. Metalurgical and Materials Transactions B. Abstracts, 27B, 3, 1996.
  • 112. Kargi F., Cikla S.: Biosorption of zinc(II) ions onto powdered waste sludge (PWS): Kinetics and isotherms. Enzyme and Microbial Technology, 38: 705-710, 2006.
  • 113. Karvelas M., Katsoyiannis A., Samara C.: Occurrence and fate of heavy metals in the wastewater treatment process. Chemosphere, 53: 1201-1210, 2003.
  • 114. Karwowska E., Łebkowska M., Kasiura K., Różańska B.: Usuwanie ołowiu ze ścieków z zastosowaniem biomasy mikroorganizmów. Materiały IV Ogólnopolskiego Sympozjum Naukowo-Technicznego w ramach I Krajowego Kongresu Biotechnologicznego "Biotechnologia Środowiskowa", Wrocław 1999.
  • 115. Karwowska E., Łebkowska M.: Usuwanie miedzi i niklu ze ścieków galwanizerskich metodą biosorpcji. Materiały Konferencji "Mikrozanieczyszczenia w środowisku w świetle przepisów Unii Europejskiej", Ustroń-Zawodzie 2000.
  • 116. Karwowska E., Łebkowska M.: Sposób mikrobiologicznego usuwania metali ze ścieków i osadów ściekowych. Zgłoszenie patentowe P.350834, 2001.
  • 117. Karwowska E.: Molekularne podstawy oporności bakterii na metale ciężkie. Problemy Higieny, 71: 20-26, 2001.
  • 118. Karwowska E.: Usuwanie wybranych metali ciężkich ze ścieków przy zastosowaniu osadu czynnego. Praca doktorska. Politechnika Warszawska 2000.
  • 119. Ke J., Li H.: Bacterial leaching of nickel-bearing pyrrhotite. Hydrometallurgy, 82: 172-175, 2006.
  • 120. Keeling S.E., Davies K.L., Palmer M.L., Townsend D.E., Watkin E., Johnson J.A., Watling H.R.: Utilisation of native microbes from a spent chalcocite test heap. Hydrometallurgy, 83: 124-131, 2006.
  • 121. Kim S.D., Kilbane J.J., Cha D.K.: Prevention of Acid Mine Drainage by Sulfate Reducing Bacteria: Organic Substrate Addition to Mine Waste Piles. Environmental Engineering Science, 16, 2: 139-145, 1999.
  • 122. Kinzler K., Gehrke T., Telegdi J., Sand W.: Bioleaching - a result of interfacial processes caused by extracellular polymeric substances (EPS). Hydrometallurgy, 71: 83-88, 2003.
  • 123. Kitada K., Ito A., Yamada K., Aizawa J., Umita T.: Biological leaching of heavy metals from anaerobically digested sewage sludge using indigenous sulfur-oxidizing bacteria and sulfur waste in a closed system. Water Science and Technology, 2, 43: 59-65, 2001.
  • 124. Klimiuk E., Kańska Z., Łebkowska M.: Badania nad kinetyką usuwania i akumulacji kadmu w złożu kaskadowym. W: Metale i ich wpływ na biocenozy wodne. Z. Kańska (red.), Wydawnictwa Politechniki Warszawskiej, 3: 55-69, Warszawa 1992.
  • 125. Klimiuk E., Kuczajowska-Zadrożna M.: The effect of Poly(vinyl Alcohol) on Cadmium Adsorption and Desorption from Alginate Adsorbents. Polish Journal of Environmental Studies, 11, 4: 375-384, 2002.
  • 126. Klimiuk E., Łebkowska M.: Biotechnologia w ochronie środowiska. PWN, Warszawa 2003.
  • 127. Krebs W., Bachofen R., Brandl H.: Growth stimulation of sulfur oxidizing bacteria for optimization of metal leaching efficiency of fly ash from municipal solid waste incineration. Hydrometallurgy, 59, 2-3: 283-290, 2001.
  • 128. Krebs W., Brombacher C., Bosshard P.P., Bachofen R., Brandl H.: Microbial recovery of metals from solids. FEMS Microbiology Reviews, 20, 3-4: 605-617, 1997
  • 129. Kretzchmar R., Voegelin A.: Modelling Competitive Sorption and Release of Heavy Metals in Soils. In: Heavy Metals Release in Soils. Selim H.M., Sparks D.L. (ed.), Lewis Publishers, CRC Press LLC, Boca Raton, London, New York, Washigton 2001.
  • 130. Krogmann U., Glibson V., Chess C.: Land application of sewage sludge: perceptions of New Jersey vegetable farmers. Waste Management and Research, 19, 2: 115-125, 2001.
  • 131. Krzysztofiak M., Urbanek D.: Metody statystyczne PWN, Warszawa 1979.
  • 132. Laberge C., Cluis D., Mercier G.: Metal bioleaching prediction in continuous processing of municipal sewage with Thiobacillus ferrooxidans using neural networks. Water Research, 34, 4: 1145-1156, 2000.
  • 133. Lang S.: Biological amphiphiles (microbial biosurfactants). Current Opinion in Colloid and Interface Science, 7: 12-20, 2002.
  • 134. Łebkowska M., Karwowska E.: Usuwanie metali ciężkich ze ścieków przemysłowych i z osadów ściekowych. Seria Wodociągi i Kanalizacja. Tom 10. PZIiTS, Warszawa 2003.
  • 135. Łebkowska M.: Biologiczne związki powierzchniowo czyne i ich zastosowanie do oczyszczania gruntów z produktów naftowych. Biotechnologia, 1, 64: 43-53, 2004.
  • 136. Ledin M., Pedersen K.: The environmental impact of mine wastes - Roles of microorganisms ad their significance in treatment of mine wastes. Earth-Science Reviews, 41: 67-108, 1996.
  • 137. Lee E.Y., Noh S.-R., Cho K.-S. Ryu H.W.: Leaching of Mn, Co and Ni from Manganese nodules Using an Anaerobic Bioleaching Method. Journal of Bioscience and Bioengineering, 92, 4: 354-359, 2001.
  • 138. Lee I.-H., Wang Y.-J., Chern J.-M.: Extraction kinetics of heavy metal-containing sludge. Journal of Hazardous Materials, B123: 112-119, 2005.
  • 139. Lee J.-U., Kim S.-M., Kim K.-W., Kim I.S.: Microbial removal of uranium in uranium-bearing black shale. Chemosphere, 59: 147-154, 2005.
  • 140. Lister S.K., Line M.A.: Potential utilization of sewage sludge and paper mill waste for biosorption of metals from polluted waterways. Bioresource Technology, 79: 35-39, 2001.
  • 141. Liu H.L., Teng C.H. Cheng Y.C.: A semiempirical model for bacterial growth and bioleachig of Acidithiobacillus spp. Chemical Engineering Journal, 99: 77-87, 2004.
  • 142. Lizama H.M., Harlamovs J.R., McKay D.J., Dai Z.: Heap leaching kinetics are proportional to the irrigation rate divided by heap height. Minerals Engineering, 18: 623-630, 2005.
  • 143. Lizama H.M.: Copper bioleaching behaviour in an aerated heap. International Journal of Mineral Processing, 62: 257-269, 2001.
  • 144. Lloyd J.R.: Bioremediation of metals; the application of micro-organisms that make and break minerals. Microbiology Today, 29: 67-69, 2002.
  • 145. Łebkowska M., Karwowska E.: Usuwanie metali ciężkich ze ścieków przemysłowych i z osadów ściekowych. Seria Wodociągi i Kanalizacja. Tom 10. PZIiTS, Warszawa 2003.
  • 146. Łebkowska M.: Biologiczne związki powierzchniowo czyne i ich zastosowanie do oczyszczania gruntów z produktów naftowych. Biotechnologia, 1, 64: 43-53, 2004.
  • 147. Mack C., Wilhelmi B., Duncan J.R., Burgess J.E.: Biosorption of precious metals. Biotechnology Advances, 25: 264-271, 2007.
  • 148. Maier R.M., Soberon-Chavez G.: Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Applied Microbiology and Biotechnology, 54, 5: 625-633, 2000.
  • 149. Maier R.M.: Application of Biosurfactants in the Remediation of Metal and Organic Co-Contaminated Soils and Wastestreams. Workshop Report: Combined Chemical and Microbiological Approaches to Remediating Metal and Radionuclide Contaminants, Dulles Airport Marriott, Virginia 1999.
  • 150. Malgalhaes J.M., Silva J.E., Castro F.P., Labrincha J.A.: Physical and chemical characterisation of metal finishing industrial wastes. Journal of Environmental Management, 75: 157-166, 2005.
  • 151. Malik A.: Metal bioremediation through growing cells. Environment International, 30: 261-278, 2004.
  • 152. Mandal S.K., Banerjee P.C.: Iron leaching from China clay with oxalic acid: effect of different physico-chemical parameters. International Journal of Mineral Processing, 74: 263-270, 2004.
  • 153. Mandal S.K., Banerjee P.C.: Submerged production of oxalic acid from glucose by immobilized Aspergillus niger. Process Biochemistry, 40: 1605-1610, 2005.
  • 154. Mason L.J., Rice N.M.: The adaptation of Thiobacillus ferrooxidans for the treatment of nickel-iron sulphide concentrates. Minerals Engineering, 15: 795-808, 2002.
  • 155. Matera V., Le Hecho I.: Arsenic behavior in Contaminated Soils. Mobility and Speciation. In: Heavy Metals Release in Soils. Selim H.M., Sparks D.L. (ed.), Lewis Publishers, CRC Press LLC, Boca Raton, London, New York, Washigton 2001.
  • 156. Matsunaga F., Norais C., Forterre P., Myllykallio H.: Identification of short 'eucariotic' Okazaki fragments synthesized from a prokaryotic replication origin. EMBO Reports, 4: 154-158, 2003.
  • 157. McBride M.B.: Toxic metals in sewage sludge - amended soils: has promotion of beneficial use discounted the risks? Advances in Environmental Research, 8, 1: 5-19, 2003.
  • 158. McGowen S.L., Basta N.T.: Heavy Metal Solubility and Transport in Soil Contaminated by Mining and Smelting. In: Heavy Metals Release in Soils. Selim H.M., Sparks D.L. (ed.), Lewis Publishers, CRC Press LLC, Boca Raton, London, New York, Washigton 2001.
  • 159. Mercier G., Chartier M., Couillard D.: Strategies to maximize the microbial leaching of lead from metal-contaminated aquatic sediments. Water Research, 30, 10: 2452-2464, 1996.
  • 160. Meunier N., Drogui P., Montane C., Hausler R., Mercier G., Blais J.-F.: Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate. Journal of Hazardous Materials, B137: 581-590, 2006.
  • 161. Mikkelsen D., Kappler U., McEwan A.G., Sly L.I.: Archaeal diversity in two thermophilic chalcopyrite bioleaching reactors. Environmental Microbiology, 8: 2050-2056, 2006.
  • 162. Mishra D., Kim D.-J., Ralph D.E., Ahn G.-J., Rhee Y.-H.: Bioleaching of Valuable metals from Waste Cathode Materials of the Lithium Ion Battery Industry Using Acidithiobacillus ferrooxidans. Conference Proceedings - Green Processing, 2006.
  • 163. Mukherjee A.B.: Behaviour of Heavy Metals and Their Remediation in Metalliferous Soils. In: Metals in the Environment. Prasad M.V.N. (ed.), Marcel Dekker Inc., New York, Basel 2001.
  • 164. Mulligan C., Galvez-Cloutier R.: Bioremediation of metal contamination. Environmental Monitoring and Assessment, 84: 45-60, 2003.
  • 165. Mulligan C.N., Galvez-Cloutier R.: Bioleaching of copper mining residues by Aspergillus niger. Water Science and Technology, 41, 12: 255-262, 2000.
  • 166. Mulligan C.N., Kamali M., Gibbs B.F.: Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger. Journal of Hazardous Materials, 110: 77-84, 2004.
  • 167. Mulligan C.N., Yong R.N., Gibbs B.F.: Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 60: 193-207, 2001.
  • 168. Naidu R., Krishnamurti G.S.R., Wenzel W., Megharaj M., Bolan N.S.: Heavy Metal Interactions in Soils and Implications for Soil Microbial Biodiversity. In: Metals in the Environment. Prasad M.V.N. (ed.), Marcel Dekker Inc, New York, Basel 2001.
  • 169. Natarayan K.A. Das A.: Surface chemical studies on Acidithiobacillus group of bacteria with reference to mineral flocculation. International Journal of Mineral Processing, 72: 189-198, 2003.
  • 170. Nemati M., Lowenadler J., Harrison S.T.L.: Particle size effects in bioleaching of pyrite by acidophilic thermophile Sulfolobus metallicus (BC). Applied Microbiology and Biotechnology, 53: 173-179, 2000.
  • 171. Odum H.T.: Heavy Metals in the Environment. Using Wetlands for Their Removal. Lewis Publishers, CRC Press LLC, 2000.
  • 172. Oh H., Wee Y.-J., Yun J.-S., Han S.H., Jung S., Ryu H.-W.: Lactic acid production from agricultural resources as cheep raw materials. Bioresource Technology, 96: 1492-1498, 2005.
  • 173. Okibe N., Gericke M., Hallberg K.B., Johnson D.B.: Enumeration and Characterization of Acidophilic Microorganisms Isolated from a Pilot Plant Stirred-Tank Bioleaching Operation. Applied and Environmental Microbiology, 69, 4: 1936-1943, 2003.
  • 174. Oliazadeh M., Massinaie M., Seyed Bagheri A., Shahverdi A.R.: Recovery of copper from melting furnances dust by microorgnisms. Minerals Engineering, 19: 209-210, 2006.
  • 175. Olson G.J., Brierley J.A., Brierley C.L.: Bioleaching review part B: Progress in bioleaching: applications of microbial processes by the mineral industries. Applied Microbiology and Biotechnology, 63, 3: 249-257, 2003.
  • 176. Ostrowski M., Skłodowska A.: Małe bakterie-wielka miedź. Wyd. Sci-Art., Warszawa 1996.
  • 177. Overmann J., van Gemerden H.: Microbial interactions involving sulfur bacteria: implications for the ecology and evolution of bacterial communities. FEMS Microbiology Reviews, 24: 591-599, 2000.
  • 178. Pacholewska M.: Microbial leaching of blende flotation concentrate using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Physicochemical Problems of Mineral Processing, 37: 57-68, 2003.
  • 179. Patterson J.W.: Physical-Chemical Methods of Heavy Metals Removal. W: Heavy Metals in the Aquatic Environment. Proceedings of the International Conference, Nashville, Tennessee, December 1973.
  • 180. Paul M., Sandström A., Paul J.: Prospects for cleaning ash in the acidic effluent from bioleaching of sulfidic concentrates. Journal of Hazardous Materials, 106b: 39-54, 2004.
  • 181. Peccia J., Marchand E.A., Silverstein J., Hernandez M.: Development and Application of Small-Subunit rRNA Probes for Assessment of Selected Thiobacillus Species and Members of the Genus Acidiphilium. Applied and Environmental Microbiology, 66, 7: 3065-3072, 2000.
  • 182. Peeples T.L., Kelly R.M.: Bioenergetic response of the extreme thermoacidophile Metallosphaera sedula to thermal and nutritional stresses. Applied and Environmental Microbiology, 61, 6: 2314-2321, 1995.
  • 183. Philp J.C., Kuyukina M.S., Ivshina I.B., Dunbar S.A., Christofi N., Lang S., Wray V.: Alkanotrophic Rhodococcus ruber as a biosurfactant producer. Applied Microbiology and Biotechnology, 59: 318-324, 2002.
  • 184. Picher S., Drogui P., Guay R., Blais J.F.: Wastewater sludge and pig manure used as culture media for bioleaching of metal sulphides. Hydrometallurgy, 65, 2-3: 177-186, 2002.
  • 185. Plumb J.J., Gibbs B., Stott M.B.: Robertson W.J., Gibson J.A.E., Nichols P.D., Watling H.R., Franzmann P.D.: Enrichment and characterisation of thermophilic acidophiles for the bioleaching of mineral sulphides. Minerals Engineering 15: 787-794, 2002.
  • 186. PN-75/C-04616/01. Woda i ścieki. Badania specjalne osadów. Oznaczanie zawartości wody, suchej masy, substancji organicznych i substancji mineralnych w osadach ściekowych.
  • 187. PN-82/C-04616/08. Woda i ścieki. Badania specjalne osadów. Oznaczanie aktywności dehydrogenaz w osadzie czynnym metodą z TTC.
  • 188. PN-90/C-04540/01. Woda i ścieki. Badania pH, kwasowości I zasadowości. Oznaczanie pH wód i ścieków o przewodności właściwej 10µS/cm i powyżej metodą elektrometryczną.
  • 189. PN-ISO 9280:2002. Jakość wody. Oznaczanie siarczanów(VI). Metoda grawimetryczna z chlorkiem baru.
  • 190. Pogliani C., Donati E.: The role of exopolymers in the bioleaching of a non ferrous metal sulphide. Journal of Industrial Microbiology and Biotechnology, 22: 88-92, 1999.
  • 191. Poradnik galwanotechnika. Praca zbiorowa. Wydawnictwo Naukowo-Techniczne, Warszawa 1973.
  • 192. Qiu M., Xiong S., Zhang W., Wang G.: A comparison of bioleaching of chalcopyrite using pure culture or a mixed culture. Minerals Engineering, 18: 987-990, 2005.
  • 193. Quereshi S., Richards B.K., Steenhuis T.S., McBride M.B., Baveye P., Dousset S.: Microbial acidification and pH effects on trace element release from sewage sludge. Environmental Pollution, 132: 61-71, 2004.
  • 194. Ravishankar B.R., Auclair J.-C., Tyagi R.D.: Partitioning of Heavy Metals in Some Quebec Municipal Sludges. Water Pollution Research Journal of Canada, 29, 4: 457-470, 1994.
  • 195. Rawlings D.E.: The molecular genetics of Thiobacillus ferrooxidans and other mesophilic, acidophilic, chemolitotrophic iron- or sulfur-oxidizing bacteria. Hydrometallurgy, 59: 187-201, 2001.
  • 196. Rejinders L.: Disposal, uses and treatments of combustion ashes: a review. Resources, Conservation and Recycling, 43: 313-336, 2005.
  • 197. Renoux A.Y., Tyagi R.D., Samson R.: Assessment of toxicity reduction after metal removal in bioleached sewage sludge. Water Research, 35, 6: 1415-1424, 2001.
  • 198. Rezza I., Salinas E., Calvente V., Benuzzi D., Sanz de Tosetti M.I.: Extraction of lithium from spodumene by bioleaching. Letters in Applied Microbiology, 25, 3: 172-176, 1997.
  • 199. Rezza I., Salinas E., Elorza M., Sanz de Tosetti M., Donati E.: Mechanisms involved in bioleaching of aluminosilicate by heterotrophic microorganisms. Process Biochemistry, 36: 495-500, 2001.
  • 200. Roberto F.F.: Physiology i Phylogeny of Acidophilic, Heterotrophic Bacteria. ChemMet Research Seminar Series, March 1999.
  • 201. Rodriguez Y., Ballester A., Blazquez M.L., Gonzalez F., Munnoz J.A.: New information on the pyrite bioleaching mechanism at low and high temperature. Biohydrometallurgy: Fundamentals, technology and sustainable development. International Biohydrometallurgy Symposium No 14, Ouro Preto, Brasil. Vol. 71, 1-2: 37-46, 2003.
  • 202. Rohwerder T., Gehrke T., Kinzler K., Sand W.: Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Applied Microbiology and Biotechnology, 63, 3: 239-248, 2003.
  • 203. Romero J., Yaňez C., Vásqeuz M., Moore E.R.B., Espejo R.T.: Characterization and identification of an iron-oxidizing, Leptospirillum-like bacterium, present in the high sulfate leaching solution of a commercial bioleaching plant. Research in Microbiology, 154: 353-359, 2003.
  • 204. Ron E.Z., Rosenberg E.: Biosurfactants and oil bioremediation. Current Opinion in Biotechnology, 13, 3: 249-252, 2002.
  • 205. Rosenberg E., Ron E.Z.: Bioemulsans: microbial polymeric emulsifiers. Current Opinion in Biotechnology, 8: 313-316, 1997.
  • 206. Rothe N., Gundermann K.O., Jentsch F.: The pH-dependent solubility of heavy metals from sewage sludge of different compositions. (in German) Zentralblatt Fuer Bakteriologie Mikrobiologie und Hygiene, 187, 2: 112-124, 1988.
  • 207. Roundhill D.M.: Extraction of Metals from Soils and Waters. Kluwer Academic/Plenum Publishers, New York 2001.
  • 208. Ryu H.W., Moon H.S., Lee E.Y., Cho K.S., Choi H.: Leaching Characteristics of Heavy Metals from Sewage Sludge by Acidithiobacillus thiooxidans MET. Journal of Environmental Quality, 32: 751-759, 2003.
  • 209. Sakakibara T., Murakami S.: Enumeration of bacterial cell numbers by amplified firefly bioluminescence without cultivation. Analytical Biochemistry, 312: 48-56, 2003.
  • 210. Sambrook J., Russel D.W.: Molecular Cloning: A laboratory Manual (3rd edition), CSHL Press, 2001.
  • 211. Sand W., Gehrke T.: Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria. Research in Microbiology, 157: 49-56, 2006.
  • 212. Sandler S.J., Satin L. H., Samra H.S., Clark A.J. : recA-like genes from three archaean species with putative protein products similar to Rad51 and Dmc1 proteins of the yeast Saccharomyces cerevisiae. Nucleic Acids Research, 24: 2125-2132, 1996.
  • 213. Santhiya D., Ting Y.-P.: Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst. Journal of Biotechnology, 121: 62-74, 2006.
  • 214. Santos L.R.G., Barbosa A.F., Souza A.D., Leao V.A.: Bioleaching of a complex nickel-iron concentrate by mesophile bacteria. Minerals Engineering, 19: 1251-1258, 2006.
  • 215. Sayer J.A., Kierans M., Gadd G.M.: Solubilisation of some naturally occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger. FEMS Microbiology Letters, 154: 29-35, 1997.
  • 216. Schinner F., Burgstaller W.: Extraction of Zinc from Industrial Waste by a Penicillium sp. Applied and Environmental Microbiology, 55, 5: 1153-1156, 1989.
  • 217. Schippers A., Jozsa P.G., Gehrke T., Rohwerder T., Sand W.: Bacterial metal sulfide degradation - pathways, inhibition measures and monitoring. Fifth International Conference on Acid Rock Drainage, Denver, 20-26 May 2000.
  • 218. Schippers A., Rohwerder T., Sand W.: Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepiritization of coal. Applied Microbiology and Biotechnology, 52, 1: 104-110, 1999.
  • 219. Schnurer J., Rosswal T.: Fluorescein diacetate hydrolysis as a heasure of total microbial activity in soil and litter. Applied and Environmental Microbiology, 43, 6: 1256-1261, 1982.
  • 220. Seidel H., Ondruschka J., Morgenstern P., Wennrich R., Hoffmann P.: Bioleaching of heavy metal - contaminated sediments by indigenous Thiobacillus spp - metal solubilization and sulfur oxidation in the presence of surfactants. Applied Microbiology and Biotechnology, 54: 854-857, 2000.
  • 221. Seidel H., Wennrich R., Hoffman P., Löser C.: Effect of different types of elemental sulfur on bioleaching of heavy metals from contaminated sediments. Chemosphere, 62: 1444-1453, 2006.
  • 222. Semenza M., Viera M., Curutchet G., Donati E.: The role of Acidithiobacillus caldus in the bioleaching of metal sulfides. Latin American Applied Research, 32: 303-306, 2002.
  • 223. Senthilkumaar S., Bharathi S., Nithyanandhi D., Subburam V.: Biosorption of toxic heavy metals from aqueous solutions. Bioresource Technology, 75: 163-165, 2000.
  • 224. Shanableh A., Ginige P.: Acidic bioleaching of heavy metals from sewage sludge. Journal of Material Cycles and the Waste Management, 2: 43-50, 2000.
  • 225. Shi S-Y., Fang Z-H, Ni J-R.: Comparative study on the bioloeaching of zinc sulphides. Process Biochemistry, 41: 438-446, 2006.
  • 226. Shooner F., Tyagi R.D.: Termophilic microbial leaching of heavy metals from municipal sludge using indigenous sulphur oxidizing microbiota. Applied Microbiology and Biotechnology, 45, 3: 440-446, 1996.
  • 227. Silva J.E., Paiva A.P., Soares D., Labrincha A., Castro F.: Solvent extraction applied to the recovery of heavy metals from galvanic sludge. Journal of Hazardous Materials B120: 113-118, 2005(a).
  • 228. Silva J.E., Soares D., Paiva A.P., Labrincha A., Castro F.: Leaching behaviour of galvanic sludge in sulphuric acid and ammoniacal media. Journal of Hazardous Materials B121: 195-202, 2005(b).
  • 229. Siuta J.: Inżynieria ekologiczna nr 3. Materiały IV Ogólnopolskiej Konferencji, Bydgoszcz 2001.
  • 230. Skłodowska A., Matlakowska R.: Influence of exopolymers produced by bacterial cells on hydrophobicity of substrate surface. Biotechnology Techniques, 11, 11: 837-840, 1997.
  • 231. Solisio C., Lodi A., Veglio F.: Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobacillus ferrooxidans. Waste Management, 22: 667-675, 2002.
  • 232. Sophia A.C., Swaminathan K.: Assessment of the mechanical stability and chemical leachability of immobilized electroplating waste. Chemosphere, 58: 75-82, 2005.
  • 233. Sreekrishnan T.R., Tyagi R.D., Blais J.F., Campbell P.G.C.: Kinetics of heavy metal bioleaching from sewage sludge I. Effects of process parameters. Water Research, 27, 11: 1641-1651, 1993.
  • 234. Sreekrishnan T.R., Tyagi R.D.: A Comparative Study of the Cost of Leaching Out Heavy Metals from Sewage Sludges. Process Bioechemistry, 31, 1: 31-41, 1996.
  • 235. Sreekrishnan T.R., Tyagi R.D.: Sensivity of Metal-Bioleaching Operation to Process Variables. Process Biochemistry, 30, 1: 69-80, 1995.
  • 236. Srivastava S., Prakash S., Srivastava M.M.: Studies on mobilization of chromium with reference to its plant availability - Role of organic acids. BioMetals, 12: 201-207, 1999.
  • 237. Stanley P.E.: A Concisce Beginner's Guide to Rapid Microbiology Using Adenosine Triphosphate (ATP) and Luminescence. In: ATP Luminescence Rapid Methods in Microbiology, ed. Stanley P.E., McCarthy B.J., Smither R., Blackwell Scientific Publications, Oxford, 1989.
  • 238. Strasser H., Brunner H., Schinner F.: A comparative study of microbial leaching of metals from anaerobically digested sewage sludge with autotrophic and heterotrophic microorganisms. ECB 6: Proceedings of the 6th European Congress on Biotechnology, Florence, Italy, 1994.
  • 239. Sukreeyapongse O., Holm P.E., Strobel B.W., Panichsakpatana S., Magid J., Hansen H.C.B.: pH - Dependent Release of Cadmium, Copper and Lead from Natural and Sludge-Amended Soil. Journal of Environmental Quality, 31: 1901-1909, 2002.
  • 240. Swamy K.M., Narayana K.L., Misra V.N.: Bioleaching with ultrasound. Ultrasonics Sonochemistry, 12: 301-306, 2005.
  • 241. Syed S.: A green technology for recovery of gold from non-metallic secondary sources. Hydrometallurgy, 82: 48-53, 2006.
  • 242. Sztaba K., Konopka E.: Possibilities of recovery of dispersed metals occurring in black shale using microorganisms. Geological Quarterly, 38, 4: 701-708, 1994.
  • 243. Sztompka E.: Biodegradation of engine oil in soil. Acta Microbiologica Polonica, 48, 1: 185-196, 1999.
  • 244. Tichy R., Rulkens W.H., Grotenhuis J.T.C., Nydl V., Cuypers C., Fajtl J.: Bioleaching of metals from soils or sediments. Water Science and Technology, 37, 8: 119-127, 1998.
  • 245. Tributsch H.: Direct versus indirect bioleaching. Hydrometallurgy, 59: 177-185, 2001.
  • 246. Trzeciak A.M.: Chemia metali w środowisku naturalnym. Reakcje chemiczne decydujące o obiegu metali w środowisku. Wiadomości Chemiczne, 48, 1-2: 85-103 1994.
  • 247. Tunali S., Çabuk A., Akar T.: Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chemical Engineering Journal, 115: 203-211, 2006.
  • 248. Tyagi R.D., Blais J.F., Meunier N., Benmoussa H.: Simultaneous sewage sludge digestion and metal leaching - effect of sludge solids concentration. Water Research, 31, 1: 105-118, 1997.
  • 249. Tyagi R.D., Boulanger B., Auclair J.C.: Simultaneous Municipal Sludge Digestion and Metal Leaching. Journal of Environmental Science and Health, A28, 6: 1361-1379, 1993.
  • 250. Tyagi R.D., Sreekrishnan T.R., Blais J.F., Campbell P.G.C.: Kinetics of heavy metal bioleaching from sewage sludge III. Temperature effects. Water Research, 28, 11: 2367-2375, 1994.
  • 251. Ustawa z dn. 27.04.2001 o odpadach. D.U. 01.62.628, z późniejszymi zmianami.
  • 252. Vairavamurthy M.A.: The Role of Thiols and Sulfide Oxidation Intermediates in Mobilizing Metals. Workshop Report: Combined Chemical and Microbiological Approaches to Remediating Metal and Radionuclide Contaminants, Dulles Airport Marriott, Virginia 1999.
  • 253. Valanzuela L., Beard S., Shabanowitz J., Hunt D.F., Jerez C.: Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnology Advances, 24: 197-211, 2006.
  • 254. Valix M., Loon L.O.: Adaptive tolerance behaviour of fungi in heavy metals. Minerals Engineering 16: 193-198, 2003.
  • 255. Veeken A.H.M., Hamelers H.V.M.: Removal of heavy metals from sewage sludge by extraction with organic acids. Water Science and Technology, 40, 1: 129-136, 1999.
  • 256. Veglio F., Beolchini F., Gasbarro A., Toro L., Ubaldini S., Abbruzzese C.: Batch and semi-continuous tests in the bioleaching of manganiferous minerals by heterotrophic mixed microorganisms. International Journal of Mineral Processing, 50: 255-273, 1997.
  • 257. Villar L.D., Garcia O.: Solubilization profiles of metal ions from bioleaching of sewage sludge as a function of pH. Biotechnology Letters, 24: 611-614, 2002.
  • 258. Wen G., Voroney R.P., Curtin D., Schoenau J.J. Qian P.Y., Inanga S.: Modification and application of soil ATP determination method. Soil Biology and Biochemistry, 37: 1999-2006, 2005.
  • 259. White C., Sayer J.A., Gadd, G.M.: Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiology Reviews, 20: 503-516, 1997.
  • 260. Williams P.T.: Pollutants from Incineration: An Overview. In: Waste Incineration and the Environment. Hester R.E., Harrison R.M. (ed.), Royal Society of Chemistry, Cambridge, 1994.
  • 261. Willscher S., Bosecker K.: Studies on the leaching behaviour of heterotrophic microorganisms isolated from an alkaline slag dump. Hydrometallurgy 71: 257-264, 2003.
  • 262. Wong J.W.C., Xiang L., Chan L.C.: pH Requirement for the Bioleaching of Heavy Metals from Anaerobically Digested Wastewater Sludge. Water, Air and Soil Pollution, 138, 1/4: 25-35, 2002.
  • 263. Wong L.T.K., Henry J.G.: Bacterial leaching of heavy metals from anaerobically digested sludge. W: Biotreatment Systems. Vol. 2. CRC Press. ed. Donald Wise: 126-169 1986.
  • 264. Wu H-Y., Ting Y-P.: Metal extraction from municipal solid waste (MSW) incineration fly ash - Chemical leaching and fungal bioleaching. Enzyme and Microbial Technology, 38: 839-847, 2006.
  • 265. Xiang L., Chan L.C., Wong J.W.C.: Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria. Chemosphere, 41: 283-287, 2000.
  • 266. Xu T.-J., Ting Y.-P.: Optimisation on bioleaching of incinerator fly ash by Aspergillus niger - use of central composite design. Enzyme and Microbial Technology, 35: 444-454, 2004.
  • 267. Yahya A., Johnson D.B.: Bioleaching of pyrite at low pH and low redox potentials by novel mesophilic Gram-positive bacteria. Hydrometallurgy, 63: 181-188, 2002.
  • 268. Yamada Y., Hoshino K., Ishikawa T.: The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Bioscience Biotechnology and Biochemistry, 61, 8: 1244-1251, 1997.
  • 269. Zagury G.J., Narasiah K.S., Tyagi R.D.: Bioleaching of metal-contaminated soil in a semicontinuous reactor. Journal of Environmental Engineering - ASCE, 9, 127: 812-817, 2001.
  • 270. Zhu N., Zhang L., Li C., Cai C.: Recycling of spent nickel-cadmium batteries based on bioleaching process. Waste Management, 23: 703-708, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0019-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.