Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Optimization of parameters of TCPAR installed in the tie-lines with regard to their interaction with LFC
Języki publikacji
Abstrakty
Rozprawa dotyczy optymalizacji parametrów regulatorów przesuwników fazowych instalowanych w liniach powiązań międzysystemowych, uwzględniającej automatyczną regulację częstotliwości i mocy wymiany. We współczesnych dużych systemach elektroenergetycznych regulacja częstotliwości i mocy wymiany wykonywana jest jako trójpoziomowy system regulacji, składający się z regulacji pierwotnej, wtórnej i trójnej. Regulacja pierwotna jest regulacją rozproszoną, natomiast regulacja wtórna i trójna - regulacją centralną. Ze względu na rozwój międzynarodowego rynku energii w ostatnich latach wzrasta zainteresowanie operatorów sieci przesyłowych zastosowaniem przesuwników fazowych do zmiany kierunku wymiany między-systemowej oraz możliwościami zwiększenia zdolności przesyłowych linii. Jako przesuwniki fazowe mogą być wykorzystane transformatory z regulacją poprzeczną przekładni i mechanicznymi przełącznikami zaczepów oraz urządzenia FACTS typu TCPAR lub UPFC. Szybkość regulacji transformatorów z mechanicznymi przełącznikami zaczepów jest na tyle mała, że nie wpływają one na stany nieustalone towarzyszące regulacji częstotliwości i mocy wymiany. Natomiast szybkość regulacji urządzeń FACTS jest na tyle duża, że urządzenia te mogą bardzo silnie wpływać na przebiegi nieustalone powstające przy zaburzeniach bilansu mocy powstałych na przykład przy awaryjnym wyłączeniu generatora. Urządzenia FACTS instalowane w liniach wymiany mogą w sposób znaczący wpływać na kołysania mocy między poszczególnymi systemami. Moce wymiany są sygnałami wejściowymi centralnych regulatorów częstotliwości i tym samym urządzenia FACTS, oddziałując w trakcie stanu nieustalonego na wartości mocy w liniach wymiany, mogą wpływać na przebieg regulacji częstotliwości. Zasadniczy problem, jaki się tu pojawia, polega na tym, aby oddziaływanie urządzeń FACTS na przebieg stanu nieustalonego było korzystne dla systemu elektroenergetycznego, tj. powodowało tłumienie kołysań międzysystemowych oraz nie pogarszało, a wręcz poprawiało, regulację częstotliwości. W rozprawie wykazano, że dobierając odpowiednio strukturę regulatorów urządzeń FACTS oraz ich parametry, można uzyskać korzystne oddziaływanie urządzeń FACTS zarówno na tłumienie kołysań, jak i przebieg regulacji częstotliwości. Opracowano odpowiednie modele matematyczne systemu elektroenergetycznego z uwzględnieniem przesuwników fazowych i ich regulatorów oraz metodę optymalizacji parametrów tych regulatorów ze względu na. odpowiednio dobrane funkcje jakości sterowania. Wykonano wielowariantowe symulacje przy różnych lokalizacjach zaburzeń bilansu mocy oraz różnych lokalizacjach przesuwników fazowych. Wyniki symulacji potwierdziły przydatność zaproponowanej metody optymalizacji parametrów oraz możliwość uzyskania korzystnego wpływu urządzeń FACTS na tłumienie kołysań międzysystemowych i przebieg regulacji częstotliwości i mocy wymiany.
The objective of this dissertation is to establish a calculation method for the optimization of parameters of TCPAR installed in tie-lines with regard to their interaction with LFC. In large contemporary power systems AGC is performed in a three-level control structure consisting of primary, secondary and tertiary control. Primary control is distributed, while secondary and tertiary control is centralised. During the last years interest in the application of TCPAR devices in tie-line power control and network capacity improvement has increased along with the development of the power system market. Transformers equipped with mechanical tap changers or FACTS devices like UPFC or TCPAR can be used as phase shifting transformers. On the one hand, these devices are slow enough not to influence the transient state during tie-line power and frequency regulation (LFC). On the other hand, they are fast enough to influence the transient state taking place when there is some power unbalance, i.e. during a generator outage occurring after a serious contingency. FACTS installed in the tie-lines can have a positive influence on damping power swings. Tie-line powers are used as input signals in supplementary frequency controllers and, ipso facto, the influence of FACTS devices installed in tie lines on transient state tie-line powers can be helpful for improving frequency control. A fundamental issue in FACTS action is setting its parameters in order to improve the power system operation, which means damping power swings and enhancing frequency control. In order to reach this goal, mathematical models of load and frequency control, including FACTS regulation and optimization method based on selected index performances, have been built. Several simulation variants in terms of power disturbance and different FACTS controller locations have been performed. The simulation results have confirmed the usefulness of the proposed parameter optimisation method and have shown the possibility of obtaining a positive influence of FACTS devices on damping power swings and controlling the tie-line power and frequency.
Rocznik
Tom
Strony
3--262
Opis fizyczny
Bibliogr. 126 poz., rys., tab., wykr.
Twórcy
autor
- Instytut Elektroenergetyki, Wydział Elektryczny, Politechnika Warszawska
Bibliografia
- [1] Abraham R.J., Das D., Patra A., AGC of a hydrothermal system with thyristor controlled phase shifter in the tie-line, Proceedings of IEEE Power India Conference, April 2006, pp. 7-14.
- [2] Aditya S.K., Das D., Battery energy storage for load frequency control of an interconnected power system, Elect. Power Syst. Res., vol. 58, No 3, Jul. 2001, pp. 179-185.
- [3] Anderson P.M., Fouad A.A., Power System Control and Operation, John Wiley & Sons, 1977.
- [4] Andersson G., Modelling and Analysis of Electric Power Systems, ETH, 2003, http://www.eeh.ee.ethz.ch/downloads/academics/courses/227-0526-00.pdf
- [5] Arnold C.P., Duke R.M., Arrillaga J., Transient stability improvement using thyristor controlled quadrature voltage injection, IEEE Trans. Vol. PAS-100, No 3, 1981, pp. 1382-1388.
- [6] Arzen K.E., Johansson M., Babuska R., A Survey on Fuzzy Control, Technical report, Esprit LTR project FAMIMO Deliverable, No D1.1B, 1998.
- [7] Bagnasco A., Delfino B., Denegri G.B., Massucco S., Management and dynamic performances of combined cycle power plants during parallel and islanding operation, IEEE Trans. on Energy Conversion, vol. 13, No 2, June 1998, pp. 194-201.
- [8] Banerjee S., Chatterjee J.K., Tripathy S.C., Application of magnetic energy storage unit as load frequency stabilizer, IEEE Trans. Energy Convers., vol. 5, No 1, Mar. 1990, pp. 46-51.
- [9] Benjamin C.K., Automatic control systems, Prentice-Hall, Englewood Cliffs, New York 1987.
- [10] Bernas S., Praca układów elektroenergetycznych, Skrypt Politechniki Warszawskiej, Tom 2 - Stabilność, Regulacja napięcia, Regulacja częstotliwości, Warszawa 1972.
- [11] Biuro Studiów i Analiz Energetycznych, Turbiny gazowe, Power Solution sp. z o.o., http://www.powersolution.pl/turbiny/turbiny.htm
- [12] Boenig H.J., Hauer J.F., Commisioning Tests of the Bonneville Power Administration 30 MJ Superconducting Magnetic Energy Storage Unit, IEEE Trans. Power Apparatus and Systems, vol. PAS-104, No 2, February 1985, pp. 302-312.
- [13] Boenig H.J., Nielson R.C., Sueker K.H., Design and Operating Experience of. an AC-Dc Power Converter for a Superconducting Magnetic Energy Storage Unit, IEEE Industry Applications Society Meeting, Chicago, IL, 1-4, Oct., 1984.
- [14] Bose B.K., Evaluation of Modern Power Semiconductor Devices and Future Trends of Converters, IEEE Trans. on Industry Applications, vol. 28, No 2, March-April 1992, pp. 403-413.
- [15] Cai Y.Q., Wu C.S., A novel algorithm for aggregating coherent generating units, IFAC Symp. on Power System and Power Plant Control, Beijing, China, 1986.
- [16] Censor Y., Pareto Optimality in Multiobjective Problems, Appl. Math. and Optimiz., vol. 4, No 1, March 1977, pp. 41-59.
- [17] Chiang T.Y., Subramanian A.K., Economic Areawise Generation Control, Paper No A 77 581-2, IEEE Power Engineering Society, Mexico City, July 1977.
- [18] Christie R., Bose A., Load Frequency Control Issues in Power System Operations after Deregulation, IEEE Transactions on Power Systems, vol. 11, No 3, August 1996, pp. 1191-1200.
- [19] Concordia C., Demello F.P., Kirchmayer L.K., Schulz R., Prime-mover response and system dynamic performance, IEEE Spectrum, October 1966, pp. 106-111.
- [20] Demello F.P., Mills R.J., B'Rells W.F., Automatic Generation Control Part 1 - Process Modelling, vol. PAS-91, No 3, March/April 1972, pp. 710-715.
- [21] Demiroren A., Automatic generation control using ANN technique for multi-area power system with SMES units, Elect. Power Compon. Syst., vol. 32, No 2, May 2004, pp. 193-213.
- [22] Demiroren A., Yesil E., Automatic generation control with fuzzy logic controllers in the power system including SMES units, International Journal of Electrical Power and Energy Systems, vol. 26, No 4, May 2004, pp. 291-305.
- [23] Devotta J.B.X., Rabbani M.G., Elangovan S., Effect of SMES unit on AGC dynamics, International Conference on Energy Management and Power Delivery, Singapore, Proceedings of EMPD'98, vol. 1, 3-5 March 1998, pp. 61-66.
- [24] Dupuis P., Houry M.P., Margotin T., Breulmann H., Grebe E., Lösing M., Winter W., Witzmann R., Zerenyi J., Dudzik J., Machowski J., Martín L., Rodriguez J.M., Urretavizcaya E., Analysis and Damping of Inter-Area Oscillations in the UCTE/CENTREL Power System, CIGRE 2000, Paper No 38-113.
- [25] Elgerd O., Electric Energy System Theory, International Student Edition, 1983.
- [26] FACTS Applications, IEEE Power Engineering Society, Publication 96 TP116-0, IEEE 1995.
- [27] Fleming P.J., Application of Multiobjective Optimization to Compensator Design for SISO Control Systems, Electronics Letters, vol. 22, No 5, 1986, pp. 258-259.
- [28] Fletcher R., Practical Methods of Optimization, vol. 1, Unconstrained Optimization, and vol. 2, Constrained Optimization, John Wiley and Sons, 1980.
- [29] Galiana F.D., Almeida K., Toussaint M., Griffin J., Atanackovic D., Assessment and control of the impact of FACTS devices on power system performance, IEEE Trans. Power Systems, vol. 11, No 4, Nov. 1996, pp. 1931-1936.
- [30] Germond A.J., Podmore R., Dynamic aggregation of generating unit models, IEEE Trans. Power App. and Syst., vol. PAS-97, No 4, July/August, 1978, pp. 1060-1069.
- [31] Grigsby L.L. et al, The Electric Power Engineering Handbook, CRC Press, USA, 2001, ISBN 0-8493-8578-4.
- [32] Gyugyi L., Schauder C.D., Sen K.K., Static synchronous series compensator: a solid state approach to the series compensation of transmission line, IEEE Trans. Power Deliv., vol. 12, No 1, 1997, pp. 406-417.
- [33] Hassan I.D., Bucci R.M., Swe K.T., 400 MW SMES Power Conditioning System Development and Simulation, IEEE Trans. on Power Electronics, vol. 8, 1993, pp. 237-249.
- [34] Hassenzahl W.V., Superconducting magnetic energy storage, Proceedings of the IEEE Vol. 71, No 9, Sept. 1983, pp. 1089-1098.
- [35] Hauer J.F., Taylor C.W., Information, reliability and control in the new power system, Proceedings of the American Control Conference, Philadelphia, Pennsylvania, June 1998, pp. 2986-2991.
- [36] Hellmann W., Szczerba Z., Regulacja częstotliwości i napięcia w systemie elektroenergetycznym, WNT, Warszawa 1978.
- [37] Hingorani N.G., Gyugyi L., Understanding FACTS, IEEE Press, New York 2000.
- [38] IEEE Committee Report, Dynamic models for steam and hydroturbines in power system studies, IEEE Trans. on PAS, vol. PAS-92, No 6, Nov. 1973, pp. 1904-1915.
- [39] IEEE Committee Report, Dynamic models for fossil fuelled steam units in power system studies, IEEE Trans. Power Sys., vol. 6, No 2, 1991, pp. 753-761.
- [40] IEEE Committee Report, Hydraulic turbine and turbine control models for system dynamic studies, IEEE Trans. Power Sys., vol. 7, No 1, 1992, pp. 167-179.
- [41] IEEE Publication 92 TH 0465-5 PWR, Current Activity in Flexible AC Transmission Systems, IEEE, April 1992.
- [42] Ilic M., Skantze P., Yu CN., Fink L., Cardell J., Power Exchange for Frequency Control (PXFC), IEEE Power Engineering Society 1999 Winter Meeting, vol. 2, 31 Jan.-4 Feb. 1999, pp. 809-819.
- [43] Instrukcja pracy systemów połączonych UCTE - Temat 1 - Regulacja mocy i częstotliwości http://www.pse-operator.pl/uploads/kontener/UCTE_Operation_Handbook_P1.pdf
- [44] Instrukcja pracy systemów połączonych UCTE - Załącznik 1 http://www.pse-operator.pl/uploads/kontener/UCTE_Operation_Handbook_A1.pdf
- [45] Januszewski M., Urządzenia FACTS jako środek poprawy stabilności systemu elektroenergetycznego, rozprawa doktorska, Politechnika Warszawska, Wydział Elektryczny, 2002.
- [46] Januszewski M., Machowski J., Damping of power swings in electric power systems by control of UPFC, Archives of Electrical Engineering, vol. LII, No 2, 2003, pp. 153-166, ISSN 0004-0746.
- [47] Januszewski M., Machowski J., Białek J., Application of Direct Lyapunov Method to Improve Damping of Power Swings by Control of UPFC, IEE Proc. Gener. Transm. Distrib., vol. 151, No 2, March 2004, pp. 252-260, ISSN 1350-546.
- [48] Jaleeli N., VanSlyck L.S., Ewart D.N., Fink L.H., Hoffmann A.G., Understanding automatic generation control, IEEE Trans. Power Syst., vol. 7, No 3, 1992, 1106-1122.
- [49] Kaczorek T., Teoria sterowania, Tom I, PWN, Warszawa 1977.
- [50] Kasprzyk S., Dudzik J., Prowadzenie regulacji mocy i częstotliwości w krajowym systemie elektroenergetycznym. Podstawowe założenia na okres wdrażania aktualnego modelu rynku, Materiały z Seminarium Sekcji Systemów Elektroenergetycznych Komitetu Elektrotechniki PAN, 2000.
- [51] Kimbark E.W., Direct Current Transmission, vol. 1, Wiley, New York 1971.
- [52] Kirchmayer L.K., Economic Control of Interconnected Systems, John Wiley & Sons, New York 1959.
- [53] Kothari M.L., Satsangi P.S., Nanda J., Sampled-data automatic generation control of interconnected reheat thermal systems considering generation rate constraint, IEEE Transactions on Power Apparatus and Systems, vol. PAS-100, No 5, May 1981, pp. 2334-2342.
- [54] Kundur P., Power system Stability and Control, McGraw-Hill, New York 1994.
- [55] Kunish H.J., Kramer K.G., Dominik H., Battery energy storage - Another option for load-frequency control and instantaneous reserve, IEEE Trans. Energy Convers., vol. EC-1, No 3, Sept. 1986, pp. 46-51.
- [56] Lasseter R.H., Jalali S.G., Power Conditioning Systems for Superconductive Magnetic Energy Storage, IEEE Transactions on Energy Conversion. Vol. 6, No 3, September 1991, pp. 381-387.
- [57] Lee C.C., Fuzzy logic in control systems: fuzzy logic controller, parts I-II. IEEE Trans. Syst. Man. Cyber., vol. 20, No 2, 1990, pp. 404-418.
- [58] Levenberg K., A Method for the Solution of Certain Problems in Least Squares, Quart. Appl. Math., vol. 2, 1944, pp. 164-168.
- [59] Lu C.F., Liu C.C., Wu C., Effect of battery energy storage system on load frequency control considering governor deadband and generation rate constraints. IEEE Trans. Power Syst., vol. 10, No 3, 1995, pp. 555-561.
- [60] Luor T.S., Hsu Y.Y., Wang S.K., Jeng L.H., Guo T.Y., Lin J.T., Chen Y.Y., Huang C.Y., Application of thyristor-controlled series compensators to enhance oscillatory stability and transmission capability of longitudinal power system, IEEE Transactions on Power Systems, vol. 14, No 1, 1999, pp. 179-185.
- [61] Machowski J., Dynamic equivalents for transient stability studies of electrical power systems, Int. J. on Electrical Power and Energy Systems, vol. 7, No 4, 1985, pp. 215-223.
- [62] Machowski J., Cichy A., Gubina F., Omahen P., External subsystem equivalent model for steady-state and dynamic security assessment, IEEE Transactions on Power Systems, vol. 3, No 4, 1988, pp. 1456-1463.
- [63] Machowski J., Bernas S., Stany nieustalone i stabilność systemu elektroenergetycznego, WNT, Warszawa 1988.
- [64] Machowski J., Bialek J., Bumby J., Power System Dynamics and Stability, John Wiley & Sons, Chichester 1997.
- [65] Machowski J., Simple Robust Adaptive Control Of Static Var Compensators, Universitat Kaiserslautern TB 151/92.
- [66] Machowski J., Nelles D., Optimal control of superconducting magnetic energy storage unit, Electric Machines and Power Systems, vol. 20, No 6, 1992, pp. 623-640.
- [67] Machowski J., Nelles D., Optimal modulation controller for superconducting magnetic energy storage, International Journal of Electrical Power & Energy Systems, vol. 16, No 5, 1994, pp. 291-300.
- [68] Machowski J., Urządzenia elastycznych systemów przesyłowych FACTS - możliwości i ograniczenia, Archiwum Energetyki, Zeszyt 1-2, 1997, s. 99-116, ISSN 0066-684X.
- [69] Machowski J., Regulacja i stabilność systemów elektroenergetycznych, WPW, Warszawa 2007.
- [70] Machowski J., Elastyczne systemy przesyłowe - FACTS, Przegląd Elektrotechniczny, nr 7, 2002, ISSN 0033-2097.
- [71] Markowski A., Kostro J., Lewandowski A., Automatyka w pytaniach i odpowiedziach, WNT, Warszawa 1979.
- [72] Marquardt D.W., An Algorithm for Least-Squares Estimation of Nonlinear Parameters, Soc. Indust. Appl. Math., vol. 11, 1963, pp. 431-441.
- [73] Mazurek J., Vogt H., Żydanowicz W., Podstawy automatyki, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 1996.
- [74] Modeling of power electronics equipment (FACTS) in load flow and stability programs, Task Force 38.01.08, Report 145, CIGRE, August 1999.
- [75] Moré J.J., The Levenberg-Marquardt Algorithm: Implementation and Theory, Numerical Analysis, Watson, G.A. (ed.), Lecture Notes in Mathematics, vol. 630, Springer, Berlin 1977, pp. 105-116.
- [76] Ngamroo I., Application of static synchronous series compensation to stabilization of frequency oscillations in an interconnected power system, Proceedings of 2001 IEEE International Symposium on Circuits and Systems (ISCAS 2001), vol. 2, Sydney, Australia, 2001, pp. 113-116.
- [77] Ngamroo I., An optimization technique of robust load frequency stabilizer for superconducting magnetic energy storage, Energy Conversion and Management, vol. 46, Issues 18-19, November 2005, pp. 3060-3090.
- [78] Ngamroo I., Kongprawechnon W., A robust controller design of SSSC for stabilization of frequency oscillations in interconnected power systems, Electric Power Systems Research, vol. 67, No 3, 2003, pp. 161-176.
- [79] Ngamroo I., Mitani Y., Tsuji K., Application of SMES coordinated with solid-state shifter to load frequency control, IEEE Trans. Appl. Supercond., vol. 9, No 2, Jun. 1999, pp. 322-325.
- [80] Ngamroo I., Mitani Y., Tsuji K., Application of phase shifter to load frequency control and economic load dispatch in loop interconnected power system, 13th Power System Computation Conference, Trondheim, June 28-July 2nd, 1999.
- [81] Ngamroo I., Robust decentralized frequency stabilizers design for SMES taking into consideration system uncertainties, Electric Power Systems Research, vol. 74, No 2, pp. 281-292.
- [82] Optimization Toolbox http://www.mathworks.com/access/helpdesk/help/toolbox/optim/optim.html
- [83] Ourari M.L., Dessaint L.A., Do V.Q., Dynamic Equivalent Modeling of Large Power Systems Using Structure Preservation Technique, IEEE Transactions on Power Systems, vol. 21, No 3, Aug. 2006, pp. 1284-1295.
- [84] Ourari M.L., Dessaint L.A., Do V.Q., Generating units aggregation for dynamic equivalent of large power systems, IEEE Power Engineering Society General Meeting, 6-10 June 2004, vol. 2, pp. 1535-1541.
- [85] Pan C.T., Liaw C.M., An adaptive controller for power system load frequency control, IEEE Transactions on Power Systems, vol. 4, No 1, 1989, pp. 122-128.
- [86] Peterson H.A., Mohan N., Boom R.W., Superconductive energy storage inductor-converter units for power systems, IEEE Transactions on Power Apparatus and Systems, vol. 94, No 4, Part 1, July 1975, pp. 1337-1348.
- [87] Podmore R., Comprehensive Program For Computing Coherency-based Dynamic Equivalents, Power Industry Computer Applications Conference, IEEE Conference Proceedings, May 15-18, 1979, pp. 298-306.
- [88] Podmore R., Identification of coherent generator dynamic equivalents, IEEE Trans. Power App. Syst., vol. PAS-97, No 4, July/Aug 1978, pp. 1344-1354.
- [89] Powell M.J.D., The Convergence of Variable Metric Methods for Nonlinearly Constrained Optimization Calculations, O.L. Mangasarian, R.R. Meyer, and S.M. Robinson (eds.), vol. 3, Academic Press, New York 1978, pp. 27-63.
- [90] Powell M.J.D., Variable Metric Methods for Constrained Optimization, Mathematical Programming: The State of the Art, A. Bachem, M. Grotschel and B. Korte (eds.), Springer Verlag, 1983, pp. 288-311.
- [91] Ramey D.G., Skooglund I.W., Detailed hydrogovemor representation for system stability studies, IEEE Trans. on PAS, vol.-PAS-89, No 1, 1970, pp. 106-112.
- [92] Rasolomampionona D.D., AGC and FACTS Stabilization Device Coordination in Interconnected Power System Control, IEEE Bologna PowerTech., June 23-26, 2003, 0-7803-7967-5/03/$17.00 (c) 2003 IEEE.
- [93] Rasolomampionona D.D., Analysis of the power system steady-state stability. Influence of the load characteristic, Archives of Electrical Engineering, vol. XLIX, No 1, 2000, pp. 65-101.
- [94] Rasolomampionona D.D., Badanie stabilności lokalnej systemu elektroenergetycznego z uwzględnieniem podatności napięciowej odbiorów, rozprawa doktorska, Wydział Elektryczny Politechniki Warszawskiej, 1994.
- [95] Rasolomampionona D.D., Machowski J., Współdziałanie ARCM oraz urządzeń FACTS w regulacji połączonych systemów elektroenergetycznych, XI Międzynarodowa Konferencja Naukowa APE'2003, Gdańsk, Jurata 11-13 czerwca 2003, ISBN 83-909885-2-6.
- [96] Rasolomampionona D.D., Machowski J., Interaction between TCPAR's installed in the tie-lines of interconnected power systems and automatic frequency controllers, 6th International Conference CONTROL OF POWER SYSTEMS'04, Štrbské Pleso Slovakia, June 16-18, 2004.
- [97] Robak S., Nowa metoda hierarchicznego sterowania generatorów synchronicznych poprawiająca stabilność systemu elektroenergetycznego, rozprawa doktorska, Wydział Elektryczny Politechniki Warszawskiej, 1999.
- [98] Robak S., Rasolomampionona D.D., Block diagram transfer function model of generator - infinite busbar system including TCPAR, International Conference MEPS, Wrocław 2002.
- [99] Robak S., Rasolomampionona D.D., Selection of PST control signal using block diagram transfer function model, IEEE Bologna PowerTech June 23-26, 2003, 0-7803-7967-5/03/$17.00 (c) 2003 IEEE.
- [100] Robak S., Rasolomampionona D.D., Advanced Modelling of Generator-Infinite-Busbar System Including Thyristor Controlled Phase Shift Transformer, Archives of Electrical Engineering, vol. LII, No 2, 2003, pp. 201-219, ISSN 0004-0746.
- [101] Robak S., Rasolomampionona D.D., Modelowanie systemu elektroenergetycznego z uwzględnieniem urządzenia FACTS typu PST, Archiwum Energetyki, tom XXXII, nr 1-2, 2003, pp. 3-22, ISSN 0066-684X.
- [102] Robak S., Rasolomampionona D.D., Influence of FACTS device like TCPAR on Damping of Electromechanical Swings, Part I: Multimachine System model for Steady-State Analysis, Archives of Electrical Engineering, vol. LII, No-2, 2003, pp. 399-419, ISSN 0004-0746.
- [103] Robak S., Rasolomampionona D.D., Januszewski M., Influence of FACTS device like TCPAR on Damping of Electromechanical Swings, Part II: Application of LQR Technique to Design a UPFC Controller, Archives of Electrical Engineering, vol. LIII, No 2, 2004, pp. 35-48, ISSN 0004-0746.
- [104] Robak S., Rasolomampionona D.D., Effectiveness of Power System Oscillation Damping Using TCPAR Devices, International UPEC 2004 Conference, Bristol, University of the West England, 2004.
- [105] Rogers J., Boenig H., Bronson J., Colyer D., Hassenzahl W., Turner R., Schermer R., 30-MJ superconducting magnetic energy storage (SMES) unit for stabilizing an electric transmission system, IEEE Transactions Magnetics, vol. 15, No 1, Jan. 1979, pp. 820-823.
- [106] Rogers J., Boenig H., Schermer R., Hauer J., Operation of the 30 MJ superconducting magnetic energy storage system in the Bonneville Power Administration electrical grid, IEEE Transactions on Magnetics, vol. 21, No 2, Mar. 1985, pp. 752-755.
- [107] Rogers J.D., Schermer R.I., Miller B.L., Hauer J.F., 30 MJ Superconducting Magnetic Energy Storage System for Electric Utility Transmission Stabilization, Proceedings of the IEEE, vol. 71, No 9, September 1983, pp. 1099-1107.
- [108] Salameh Z.M., Casacca M.A., Lynch W.A., A mathematical model for lead-acid batteries, IEEE Trans. Energy Conversions, vol. 7, No 1, 1992, pp. 93-97.
- [109] Shahian B., Hassul M., Control system design using MATLAB. Prentice Hall, Englewood Cliffs, 1993.
- [110] Skogestad S., Postlethwaite I., Multivariable Feedback Control Analysis and Design, Wiley, Chichester, U.K., 1996, ISBN 0-471-94277-4.
- [111] Tam K., Kumar P., Application of SMES in an Asynchronous Link between Power Systems, IEEE Trans. on Energy Conversion, vol. 5, No 3, Sep. 1990, pp. 436-444.
- [112] Tripathy S.C., Improved load-frequency control with capacitive energy storage source, Energy Conversion and Management, Pergamon-Elsevier Science Ltd, vol. 38, No 6, 1997, pp. 551-562.
- [113] Tripathy S.C., Bak-Jensen B., Automatic generation control of multi-area power system with superconducting magnetic storage unit, IEEE Power Tech Proceedings, vol. 3, Porto, 10-13 Sept. 2001, pp. 6.
- [114] Tripathy S.C., Balasubramanian R., Chandramohanan Nair P.S., Small rating capacitive energy storage for dynamic performance improvement of automatic generation control, IEE Proceedings Generation, Transmission and Distribution, vol. 138, No 1, Jan 1991, pp. 103-111, ISSN 0143-7046.
- [115] Tripathy S.C., Balasubramanian R., Chandramohanan Nair P.S., Adaptive automatic generation control with superconducting magnetic energy storage in power system, IEEE Trans. Energy Convers., vol. EC 7, No 3, 1992, pp. 434-41.
- [116] Tripathy S.C., Balasubramanian R., Chandramohanan Nair P.S., Effect of superconducting magnetic energy storage on automatic generation control considering governor deadband and boiler dynamics, IEEE Trans. Power Syst., vol. 3, No 7, Aug. 1992, pp. 1266-73.
- [117] Tripathy S.C., Bhatti T.S., Jha C.S., Malik O.P., Hope G.S., Sampled data automatic generation control analysis with reheat steam turbines and governor dead band effects, IEEE Trans. Power App. Syst., vol. PAS-103, No 5, May 1984, pp. 1045-1051.
- [118] Tripathy S.C., Chanramohanan Nair P.S., Automatic generation control with superconducting magnetic energy storage in power system, Electric Machines and Power Systems 1994, pp. 317-84.
- [119] Tripathy S.C., Juengst K.P., Sampled data automatic generation control with superconducting magnetic energy storage in power systems, IEEE Trans. Energy Convers., vol. 12, No 2, Jun. 1997, pp. 187-192.
- [120] Wang L., Klein M., Yirga S., Kundur P., Dynamic Reduction of Large Power Systems for Stability Studies, IEEE Transactions on Power System, vol. 12, No 2, May 1997, pp. 889-895.
- [121] Wang L., Influences and countermeasures of sudden changed loads on system frequency, Final Report, 2101-1 of Electric Power Research Institute, Taiwan Power Company, 1998.
- [122] Wędzik A., Układy kombinowane produkcji energii elektrycznej, Energetyka, maj 2006.
- [123] Working Group on Prime Mover and Energy Supply Models for System Dynamic Performance Studies, Dynamic models for combined cycle plants in power system studies. IEEE Trans. on Power Systems, vol. 9, No 3, August 1994, pp. 1698-1708.
- [124] Zhang Q., So P.L., Dynamic modelling of a combined cycle plant for power system stability studies, IEEE Power Engineering Society Winter Meeting 2000, vol. 2, 2000, pp. 1538-1543.
- [125] Zhou K., Doyle J.C., Essentials of robust control, Prentice Hall, 1998.
- [126] Zin A.A.M., Kok B.C., Mustafa M.W., Lo K.L., Ariffin A.E., Time domain dynamic aggregation of generating unit based on structure preserving approach National Power and Energy Conference, 2003, Bangi (Malaysia), Proceedings, 15-16 Dec. 2003, pp. 154-160.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0019-0004