Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We prove a support theorem for a stochastic version of the Burgers system formulated for the deterministic case by Burgers in [Bu 39]. The existence and uniqueness theorem for such a stochastic system was given by Zabczyk and Twardowska in [TZ 06]. In the proof of our support theorem we use a Wong-Zakai type theorem for such a system proved by Nowak in [No 05]. We generalize the method of Mackevicius ([Ma 85]}, [Ma 86]) and Gyongy ([Gy 89]) to prove the support theorem for our stochastic system of Burgers equations. We also use some considerations from Twardowska [Tw 97a]. In our proof of the invariance theorem we use some result of Jachimiak from [Ja 98].
Wydawca
Czasopismo
Rocznik
Tom
Strony
691--710
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
autor
- Department of Mathematics Rzeszów University of Technology, ul. W. Pola 2, 35-959 Rzeszów, Poland
Bibliografia
- [AKS 93] S. Aida, S. Kusuoka and D. W. St roock, On the support of Wiener functionals, in: Asymptotic problems in probability theory: Wiener functionals and asymptotics, Pitman Res. Notes Math. Ser.284, Longman, New York, 1993, 3-34.
- [AC 84] J. P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin, 1984.
- [ADP 80] J. P. Aubin and G. Da Prato, Stochastic viability and invariance, Ann. Scoula Norm. Sup. Pisa, 27 (1980), 595–694.
- [Bu 39] J. M. Burgers, Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion, Verh. Nerderl. Akad. Wetensch. Afd. Natuurk., 17, No. 2 (1939), 1–53.
- [CWM 01] C. Cardon-Weber and A. Millet, A support theorem for a generalized Burgers SPDE, Potential Analysis, 1 (2001), 360-408.
- [CP 78] R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory, Springer, Berlin, 1978.
- [DT 95] A. L. Dawidowicz and K. Twardowska, On the support theorem for stochastic functional differential equations, Demonstratio Math., 28, no. 4 (1995), 893–902.
- [Dł 82] T. Dłotko, The one-dimensional Burgers' equation existence, uniqueness and stability, Zeszyty Nauk. Uniw. Jagielloń. Prace Mat. 23 (1982), 157–172.
- [Gy 89] I. Gyongy, The stability of stochastic partial differential equations and applications. Theorems on supports, Lecture Notes in Math., Vol. 1390, Springer, Berlin, 1989, 91–118.
- [IW 81] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981.
- [Ja 97] W. Jachimiak, A note on invariance for semilinear differential equations, Bull. Polish Acad. Sci. Math., 45, no. 2, (1997), 181–185.
- [Ja 98] W. Jachimiak, Stochastic invariance in infinite dimension, Preprint No. 591, Inst. Math., Polish Acad. Sci., Warsaw, 1998, 1–12.
- [Ja 94] W. Jachimiak, Viability for functional differential equations, Bull. Polish Acad. Sci. Math., 42, no. 1 (1994), 55–61.
- [Li 69] J. L. Lions, Quelques méthodes de résolution des problemes aux limites nonlinéaires, Dunod, Gauthier-Villars, Paris, 1969.
- [Ma 86] V. Mackevičius, On the support of the solution of a stochastic differential equation, Liet. Mat. Rink. 26, no. 1 (1986), 91–98 (in Russian).
- [Ma 85] V. Mackevičius, Sp-stability of solutions of symmetric stochastic differential equations, Liet. Mat. Rink. 25, no. 4 (1985), 72–84 (in Russian).
- [Mi 93] A. Milian, A note on the stochastic invariance for Itô equations, Bull. Polish Acad. Sci. Math., 41, no. 2(1993), 139–150.
- [Mi 94] A. Milian, Stochastic viability and a comparison theorem, Preprint No. 521, Inst. Math., Polish Acad. Sci., Warsaw, 1994, 1–24.
- [MN 92] A. Millet and D. Nualart, Support theorems for a class of anticipating stochastic differential equations, Stochastics Stochastics Rep., 39 (1992), 1–24.
- [MSS 94a] A. Millet and M. Sanz-Solé, A simple proof of the support theorem for diffusion processes, in: Lecture Notes in Math. 1583, Springer, Berlin, 1994, 36–48.
- [MSS 94b] A. Millet and M. Sanz-Solé, The support of the solution of a hyperbolic SPDE, Probab. Theory Related Fields, 98 (1994), 361–387.
- [Na 04] T. Nakayama, Support theorem for mild solutions of SDE'S in Hilbert spaces, J. Math. Sci. Univ. Tokyo, 11 (2004), 245–311.
- [No 05] A. Nowak, A Wong-Zakai type theorem for stochastic systems of Burgers equations, PanAmerican Math. J. 16, no. 2 (2006), 1–25.
- [SV 72] D. W. St roock and S. R. S. Varadhan, On the support of diffusion processes with applications to the strong maximum principle, Proc. Sixth Berkeley Sympos. on Math. Statist. Probab. Vol. III, Univ. California Press, Berkeley, 1972, 333–359.
- [Tw 97] K. Twardowska, An invariance theorem for functional differential equations, Univ. Iagel. Acta Math., 35 (1997), 121–129.
- [Tw 93] K. Twardowska, Approximation theorems of Wong-Zakai type for stochastic differential equations in infinite dimensions, Dissertationes Math., 325, 1993, 1–54.
- [Tw 96] K. Twardowska, On support theorem for semilinear stochastic evolution equations, Proc. 15-th International Conf. Multivariate Statistical Analysis, Ed. Cz. Domański and J. Korzeniowski, Łodź, 1996, 43–55.
- [Tw 97a] K. Twardowska,On support theorems for stochastic nonlinear partial differential equations, in: Stochastic Differential and Difference Equations, Progr. Systems Control Theory 23,Ed. I. Csiszar and Gy. Michaletzky, Birkhauser, Boston, 1997, 309–317.
- [TZ 03] K. Twardowska and J. Zabczyk, A note on stochastic Burgers' system of equations, Preprint No. 646, Inst. Math., Polish Acad. Sci., Warsaw, 2003, 1–32.
- [TZ 04] K. Twardowska and J. Zabczyk, A note on stochastic Burgers' system of equations, Stochastic Anal. Appl., 22, no. 6 (2004), 1641–1670.
- [TZ 06] K. Twardowska and J. Zabczyk, Qualitative properties of solutions to stochastic Burgers' system of equations, Lecture Notes in Pure and Applied Math., Vol. 245, Proceedings of 7th Trento Conference on Stochastic Partial Diff. Equations and Appl., Chapman and Hall, London, 2006, 311–322.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0015-0024