Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we first formulate the definition of compatible maps and compatible maps of types (alpha) and (beta) in intuitionistic fuzzy metric spaces and give some relations between the concepts of compatible maps and compatible maps of types (alpha) and (beta).
Wydawca
Czasopismo
Rocznik
Tom
Strony
671--684
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
autor
autor
- Department of Mathematics, Faculty of Science and Arts, Gazi University Teknikokullar, 06500 Ankara, Turkey, dturkoglu@gazi.edu.tr
Bibliografia
- [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96.
- [2] K. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61 (1994), 137-142.
- [3] Y. J. Cho, H. K. Pathak, S. M. Kang and J. S. Jung, Common fixed points of compatible maps of type (ß) on fuzzy metric spaces, Fuzzy Sets and Systems 93 (1998), 99-111.
- [4] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81-89.
- [5] Z. K. Deng, Fuzzy pseudo-metric spaces, J. Math. Anal. Appl. 86 (1982), 74-95.
- [6] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74-79.
- [7] M. A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69 (1979), 205-230.
- [8] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), 395-399.
- [9] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems 90 (1997), 365-368.
- [10] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27 (1988), 385-389.
- [11] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly. 83 (1976), 261-263.
- [12] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Sci. 9 (1986),771-779.
- [13] G. Jungck, P. P. Murthy, and Y. J. Cho, Compatible mapping of type (A) and common fixed points, Math. Japonica 38 (1993), 381-390.
- [14] G. Jungck and B. E. Rhoades, Some fixed point theorems for compatible maps, Internat. J. Math. & Math. Sci. 3 (1993), 417-428.
- [15] O. Kaleva and S. Seikkal a, On fuzzy metric spaces, Fuzzy Sets and Systems 12 (1984), 225-229.
- [16] E. P. Klement, R. Mesiar and E. Pap, A characterization of the ordering of continuous t-norms, Fuzzy Sets and Systems 86 (1997), 189-195.
- [17] E. P. Klement, R. Mesiar and E. Pap, Triangular Norms, Kluwer Academic Pub. Trends in Logic 8, Dordrecht 2000.
- [18] O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326-334.
- [19] R. Lowen, Fuzzy Set Theory, Kluwer Academic Pub., Dordrecht 1996.
- [20] S. N. Mishra, N. Sharma and S. L. Singh, Common fixed points of maps on fuzzy metric spaces, Internat. J. Math. & Math. Sci. 17 (1994), 253-258.
- [21] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals 22 (2004), 1039-1046.
- [22] H. K. Pathak, Y. J. Cho, J. M. Kang and B. Madharia, Compatible mappings of type (C) and common fixed point theorems of Gregus type, Demonstratio Math. Vol. 31 (3) (1998), 499-518.
- [23] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 314-334.
- [24] S. Sharma and B. Deshpande, Common fixed points of compatible maps of type (ß) on fuzzy metric spaces, Demonstratio Math. Vol. 35 (1) (2002), 165-174.
- [25] L. A. Zadeh, Fuzzy sets, Inform and Control 8 (1965), 338-353.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0015-0022