PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

On an extension for functions

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new classes of functions, called strongly na-precontinuous functions, strongly na-continuous functions and na-continuous functions have been introduced. This paper considers the class of sigmas -na-continuous functions and its relationships to semi-regularization topologies, the other related functions. Preservation of appropriate topo-logical properties by sigmas -na-continuous functions is investigated.
Wydawca
Rocznik
Strony
657--670
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
  • Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale, Turkey, eekici@comu.edu.tr
Bibliografia
  • [1] M. E. Abd El -Monsef, R. A. Mahmoud and A. A. Nasef, Strongly semicontinuous functions, Arab. J. Phys. Math. 11 (1990).
  • [2] P. Bhattcharya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math. 29 (3) (1987), 375-382.
  • [3] J. Borsik and J Doboš, On certain decompositions of continuity, Rend. Istit. Mat. Univ. Trieste, 20 (2) (1988), 275-282.
  • [4] N. Bourbaki, General Topology, Part I, Addison Wesley, Reading, Mass., 1996.
  • [5] G. I. Chae, T. Noiri and D. W. Lee, Na-continuous functions, Kyungpook Math. J. 26 (1986), 73-79.
  • [6] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971), 99-112.
  • [7] S. G. Crossley and S. K. Hildebrand, Semi-topological properties, Fund. Math. 74 (1972), 233-254.
  • [8] J. Dontchev and M. Ganster, More on mild continuity, Rend. Insti. Mat. Univ. Trieste, 27 (1995), 47-59.
  • [9] J. Dontchev and M. Ganster, A decomposition of irresoluteness, Acta Math. Hungar. 77 (1-2) (1997), 41-46.
  • [10] E. Ekici, On some sets in topological spaces, submitted, 2004.
  • [11] S. N. El -Deeb, I. A. Hasanein, A. S. Mashhour and T. Noiri, On p-regular spaces, Bull. Math. Soc. Sci. Math. RS Roumanie, 27 (75) (1983), 311-315.
  • [12] T. Husain, Almost continuous mappings, Prace. Mat. 10 (1966), 1-7.
  • [13] D. S. Janković, On locally irreducible spaces, Ann. Soc. Sci. Bruxelles Ser. I, 97 (2) (1983), 59-72.
  • [14] S. Kempisty, Sur les functions quasicontinues, Fund. Math. 19 (1932), 184-197.
  • [15] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Month. 70 (1963) 36-41.
  • [16] G. Lo Faro, On strongly ?-irresolute mappings, Indian J. Pure Appl. Math. 18 (1987), 146-51.
  • [17] P. E. Long and L. L. Herrington, Basic properties of regular-closed functions, Rend. Circ. Mat. Palermo 27 (1978), 20-28.
  • [18] S. N. Maheshwar i and U. Tapi, Note on Some Applications on Feebly Open Sets, M. B. J. Univ. Saugar, 1979.
  • [19] S. N. Maheshwar i and S. S. Thakur, On ?-compact spaces, Bull. Inst. Sinica 13 (1985), 341-347.
  • [20] R. A. Mahmoud, M. E. Abd El -Monsef and A. A. Nasef, Functions near of na-continuity, J. Qatar Univ. Sci. Bull. 9 (1989), 17-25.
  • [21] R. A. Mahmoud, M. E. Abd El -Monsef and A. A. Nasef, Some forms of strongly functions, ?-irresolute, Kyungpook Math. J. 36 (1996), 143-150.
  • [22] A. S. Mashhour, M. E. Abd El -Monsef and S. N. El -Deeb, On pre-continuous and weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
  • [23] A. S. Mashhour, I. A. Hasanein and S. N. El -Deeb, A note on semi-continuity and precontinuity, Indian J. Pure Appl. Math. 13 (1982), 1119-1123.
  • [24] A. S. Mashhour, I. A. Hasanein and S. N. El -Deeb, _-continuous and _-open mappings, Acta Math. Hungar. 14 (1983), 213-218.
  • [25] A. A. Nasef and T. Noiri, Strongly na-precontinuous functions, Indian J. Pure Appl. Math. 32 (10) (2001), 1495-1500.
  • [26] G. B. Navalagi, Quasi ?-closed, strongly ?-closed and weakly ?-irresolute mappings, T. A. Preprints #421.
  • [27] G. B. Navalagi, Some weak forms of normality, submitted.
  • [28] A. Neubrunnová, On transfinite sequences of certain types of functions, Acta Fac. Rer. Natur. Univ. Com. Math. 30 (1975), 121-126.
  • [29] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-70.
  • [30] T. Noiri, On ?-continuous functions, Časopis Pest. Mat. 109 (1984), 118-26.
  • [31] T. Noiri, Almost ?-continuous functions, Kyungpook Math. J. 28 (1988), 71-77.
  • [32] T. Noiri, Characterizations of extremally disconnected spaces, Indian J. Pure Appl. Math. 19 (1988), 325-329.
  • [33] T. Noiri, Semi-normal spaces and some functions, Acta Math. Hungar. 65 (3) (1994), 305-311.
  • [34] J. H. Park, B. Y. Lee and M. J. Son, On ?-semiopen sets in topological space, J. Indian Acad. Math. 19 (1) (1997), 59-67.
  • [35] V. Ptak, Completeness and open mappings theorem, Bull. Soc. Math. France 86 (1958), 41-74.
  • [36] I. L. Reilly and M. K. Vamanamur thy, On ?-continuity in topological spaces, Acta Math. Hungar. 45 (1985), 27-32.
  • [37] D. A. Rose and R. A. Mahmoud, On spaces via dense sets and SMPC functions, Kyungpook Math. J. 34 (1994), 109-116.
  • [38] L. A. Steen and J. A. Seebach Jr, Counterexamples in Topology, Holt, Rinerhart and Winston, New York 1970.
  • [39] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375-381.
  • [40] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. 78 (1968), 103-118.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0015-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.