PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Turbiny gazowe małej mocy w nowych technologiach energetycznych

Autorzy
Identyfikatory
Warianty tytułu
EN
Low-power gas turbines in new energy technologies
Konferencja
Problemy Badawcze Energetyki Cieplnej. PBEC/sympozjum (VII; 06-09 XII 2005; Warszawa, Polska)
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono informacje o stanie rozwoju turbin gazowych małej mocy, Rozpatrzono potencjalne możliwości w ewolucji schematów cieplnych oraz główne zadania i cele konstrukcyjne. Zwrócono uwagę na charakterystyczne cechy komór spalania i wymienników regeneracyjnych. Wskazano na technologie energetyczne z silnikami małej mocy, w tym układy hybrydowe z ogniwami paliwowymi.
EN
This paper overviews the development of small scale gas turbines. It analyses the possibilities of their potential evolution in the arrangements of gas turbines systems and defines the main tasks and aims for the design of one-stage compressors and radial expanders. The analysis concerns also characteristic features of combustors and regeneration heat exchangers. It finally determines trends, which are necessary for the further improvement of small scale gas turbines. Some examples of the gas turbine - fuel cell hybrid generation systems are given.
Rocznik
Tom
Strony
37--48
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
  • Instytut Maszyn i Urządzeń Energetycznych, Politechnika Śląska
Bibliografia
  • [1] Turbomachinery International Handbook 2005, vol. 45, 6.
  • [2] Turbomachinery International Handbook 2004, vol. 44, 6.
  • [3] Chmielniak T.: Koncepcje dwupaliwowego układu turbiny gazowej ze spalanie wewnętrznym i zewnętrznym. Raport wewn. Instytut Maszyn i Urządzeń Energetycznych Politechniki Śląskiej, Gliwice, 2004.
  • [4] Chmielniak T., Kosman G., Kosman W.: Problemy badawcze turbin gazowych ze spalaniem biomasy i przykładowe zastosowania. Materiały Seminarium: Możnosti Energetickeho vyużiti Biomasy, VSB-TU Ostrawa, 27-29.04.2005, 11-20.
  • [5] Chmielniak T., Lepszy S.: Spalanie zewnętrzne biomasy sprzężone równolegle z zespołem turbiny gazowej. Materiały Seminarium: Możnosti Energetickeho vyużiti Biomasy, VSB-TU Ostrawa, 27-29.04.2005, 21-27.
  • [6] Traverso A.F., Massardo: Thermoeconomic Analysis of Mixed Gas-Steam Cycles. Applied Thermal Engineering, Elsevier Science, 22, 2002, 1-21.
  • [7] Parenta J., Traverso A., Massardo A.F.: Mico Humid Air Cycle for Distributed Power Generation. Power-Gen 2002, Milan, July 2002.
  • [8] Parente J., Traverso A., Massardo A.F.: Micro Humid Air Cycle. Part A: Thermodynamic and Technical Aspects. ASME Paper GT 2003-38326, Part B - Thermoeconomic analysis, ASME Paper 2003-38328, 2003.
  • [9] Satoshi Dodo i inni: Development of an Advanced Microturbine System Using Humid Air Turbine Cycle. ASME Paper GT 2004-54337.
  • [10] Touchton G.L. i inni: A Novel Gas Turbine Produet Line for Onsite Generation and Combined Heat and Power Between 400 KWe and 1,6 MWe ASME Paper GT 2004-54257.
  • [11] Takase K., Furukawa H., Nakano K.: A Preliminary Study of an Intercooled and Reaparative Microgasturbine below 300 kW. ASME Paper 2002-GT-30403, 2002.
  • [12] Banta A.D.: Experimental Inlet Air Cooling of a 75 kW Gas Turbine. ASME Paper GT 2004-53481, 2004.
  • [13] Zheng Q., Li M., Sun Y.: Thermodynamic Performance of Wet Compression and Regenerative (WCR) Gas Turbine. ASME Paper GT-2003-38517, 2003.
  • [14] Sexton W., Sexton M.: The Effects of Wet Compression on Gas Turb ine Engine Operating Performance. ASME Paper GT 2003-38045, 2003.
  • [15] Chmielniak T.: Maszyny przepływowe. Wyd. Pol. Śląskiej, Gliwice 1997.
  • [16] Bajle O.E.: Turbomachines: A Guide to Design Selection and Theory. John Wiley and Sons. Inc. 1981.
  • [17] Gong Y., Sirakov B.T., Epstein A.H., Tan C.S.: Aerothermodynamics of Micro-Turbomachinery ASME Paper GT 2004-5387, 2004.
  • [18] Zangenek M.: Compressible Three Dimensional Blade Design Method for Radial and Mixed Flow Turbomachinery Blades. Int. J. Numerical Methods in Fluids, Vol. 13, pp. 500-624.
  • [19] Ashibara K. i inni: Optimization of Microrurbine Aerodynamics Using CFD, Inverse Design and FEM Structural Analysis (1st Report: Compressor Design). ASME Paper GT 2004-53431, 2004.
  • [20] Watanabe H. i inni: Optimization of Microturbine Aerodynamics using CFD, Inverse Design and Structural Analysis (2nd Report: Turbine Design). ASME Paper GT 2004-53583.
  • [21] Miller M.J., Durschmidt D.F., Medlock A., Sandei W.A.: An integrated Design System for Fans, Compressors, and Turbines: Part 1 - overview. ASME Paper GT 2004-53631, 2004.
  • [22] Sondel W.A., Miller M.J.: An integrated Design system for Fans, Compressors and Turbines. Part 2 - Interactive lnterfoce. ASME Paper GT 2004-53632, 2004.
  • [23] Durschmidt D.F., Medlock A., Miller M.J.: An Integrated Design System for Fans, Compressors, and Turbine: Part 3 - Fan and Compressor airfoil Geometry Generators. ASME Paper GT 2004-53636, 2004.
  • [24] Brun K. i inni: A Novel Centrifugat Flow Gas Turbine Design. ASME Paper GT 2004-53063, 2004.
  • [25] Sieros G., Kefalakis M., Papailion K.O.: Improving Turbine Performance by Use of CFD. ASME Paper GT 2004-53737, 2004.
  • [26] Politis E.S., Giannakoglou K.: A Pressure-Based Algorithm for High-Speed Turbomachinery Flows. Int. J. Numerical Methods Fluids, 25, 1997, 6380.
  • [27] Sirakov B., Gong Y., Epstein A., Tan Ch.: Design and Characterization of Micro-Compressor Impellers. ASME Paper GT 2004-53332, 2004.
  • [28] Lidtke o., Schulz A., Witting S.: Design Study of a Lean Premixed Prevaporized Counter Flow Combustion for a Micro Gas Turbine, ASME Paper GT 2002-30074, 2002.
  • [29] Croce G., Mori G., Parente J.: Assessment of Traditional and Flamelets Models for Micro Turbine Combustion Chamber Optimization, ASME Paper GT 2003-38385, 2003.
  • [30] Bohn D., Lepers J.: Effects of Biogas Combustion on the Operation Characteristics and Pollutant Emissions of a Micro Gas Turbines, ASME Paper GT 2003-38767, 2003.
  • [31] Oavondzadeh F., Nan-Suey Li: Numerical Prediction of Non-Reacting and Reacting Flow in a Model Gas Turbine Combustor, ASME Paper 2004-53496, 2004.
  • [32] Tredway B. i inni: Design of Ceramic Components for an Advanced Micro-turbine Engine. ASME Paper GT 2004-54205, 2004.
  • [33] Cameretti M.C., Tuccillo R.: Comparing Different Solutions for the Micro-Gas Turbine Combuster, ASME Paper GT 2004-53286, 2004.
  • [34] Me Donald C.F.: Low Cost Recuperator Concept for Microturbine Applications, ASME Paper 2000 GT-167, 2000.
  • [35] Kang Y., McMeirman R.: Annulat Recuperator Development and Performance Test for 200 KW Microturbine, ASME Paper GT 2003-38522, 2003.
  • [36] McDonald C.F.: Recuperator Considerations for Future Higher Efficiency Microturbines. Applied Therrnal Eng. 23, 2003, 1463-1487.
  • [37] Kesseli J., Wolf T., Nash J., Freedman S.: Micro, Industrial, and Advanced Gas Turbines Employing Recuperators. ASME Paper GT 2003-38938.
  • [38] Chiang H.-W.D., Wang C.-H., Hsu C.-N.: Performance Testing of a Microturbine Generator Set with Twin Rotaring Disk Regenerators. ASME Papers GT 2004-53467.
  • [39] Traverso A., Zanzarsi F., Massardo A. Cheope: A Tool for the Opitmal Design of Compact Recuperators. ASME Paper GT 2004-54114, 2004.
  • [40] Rodgers C.: 25-5 Kwe Microturbine Design Aspects. ASME Paper 2000-GT-0626, 2000.
  • [41] Shingi Kimifima, Bobuhide Kasagi: Performance evaluation of gas turbine-fuel cell hybrid micro generation systems. ASME Paper GT-2002-30 111, 2002.
  • [42] Kousuke Nishida i inni: Performance evoluation of multi-stage SOFC and gas turbine combined systems. ASME Paper GT-2002, 30109, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0012-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.