Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Recently, Buhagiar and Chetcuti [1] have shown that if V1 and V2 are two separable, real inner product spaces such that the modular ortholattices of their finite and cofmite subspaces are algebraically isomorphic, then V1 and V2 are isomorphic as inner product spaces. Their proof is based on the properties of inner product spaces, in particular it makes use of Gleason's theorem. In this note we show, using techniques of projective geometry, that their result holds for any inner product spaces, real, complex or quaternionic, of dimension at least three, not necessarily separable. We also consider the case when the algebraic isomorphism is replaced by a homomorphism, and the case when the underlying fields of V1 and V2 are not the same.
Wydawca
Czasopismo
Rocznik
Tom
Strony
997--1004
Opis fizyczny
Bibliogr. 4 poz.
Twórcy
autor
- Mathematical Institute, Slovak Academy of Sciences, Stefanikova 49, SK-814 73 Bratislava, Slovakia
Bibliografia
- [1] D. Buhagiar, E. Chetcuti, On isomorphisms of inner product spaces, Math. Slovaca 54 (2004), 109-117.
- [2] A. Dvurečenskij, Gleason’s Theorem and Its Applications, Kluwer Acad. Publ./Ister Science Press, Dordrecht/Bratislava, 1992.
- [3] A. Dvurečenskij, A. Pullmanová, On the homomorphisms of sum logics, Ann. Inst. Henri Poincaré/Physique théoretique 54 (1991), 223-228.
- [4] C. A. Faure, A. Frölicher, Modern Projective Geometry, Kluwer Acad. Publ., Dordrecht, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0011-0024