PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Weingarten surfaces of revolution in 3-dimensional hyperbolic space

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to construct a family of Weingarten surfaces of revolution satisfying the Weingarten relation K1= f(K2) in 3-dimensional hyperbolic space H3, where K1,K2 are principal curvatures and f is a some function.
Wydawca
Rocznik
Strony
917--922
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
  • Department of Mathematics Education and Rins, Gyeongsang National University, Chinju 660-701, South Korea
Bibliografia
  • [1] M. do Carmo and M. Dajczer, Rotation hypersurfaces in spaces of constant curvature, Trans. AMS 277 (1983), 685-709.
  • [2] F. Dillen and W. Kühnel, Ruled Weingarten surfaces in Minkowski 3-spaces, Manuscripta Math. 98 (1999), 307-320.
  • [3] F. Dillen, I. V. de Woestyne, L. Verstraelen and J. Walrave, Ruled surfaces of constant mean curvature in 3-dimensional Minkowski space, Geometry and Topology of Submanifolds 8 (1995), 145-147.
  • [4] J.-I. Hano and K. Nomizu, Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space, Tohoku Math. J. 36 (1984), 427-437.
  • [5] Y. H. Kim and D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geometry and Physics 34 (2000), 191-205.
  • [6] W. Kühnel, Ruled W-surfaces, Arch. Math. 62 (1994), 475-480.
  • [7] H. Liu, Translation surfaces with constant mean curvature in 3-dimensional spaces, J. Geometry 64 (1999), 141-149.
  • [8] H. Liu and G. Liu, Rotation surfaces with constant mean curvature in 4-dimensional pseudo-Euclidean space, Kyushu J. Math. 48 (1994), 35-42.
  • [9] H. Mori, Minimal surfaces of revolution in H3 and their global stability, Indiana Univ. Math. J. 30 (1981), 787-794.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0011-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.