PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Field of complex linear frames on real space-time manifold as dynamical variable for generally-covariant models

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A model of the self-interacting field of complex linear frames E on an n-dimensional real manifold is investigated. The model is generally-covariant and GL(n, C)- invariant. If n = 4, the components of E can be interpreted as dynamical variables for the gravitational field. A Lagrangian of E is constructed, the Euler-Lagrange equations are derived and a wide class of their solutions is found. The solutions are built of left invariant vector fields on a real semisimple Lie group "deformed" by a complex factor of a natural exponential structure.
Wydawca
Rocznik
Strony
819--835
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
  • Faculty of Mathematics and Information Science, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warszawa, Poland
Bibliografia
  • [1] P. Godlewski, Generally-covariant and GL(n,R)-invariant models of self-interacting field of linear frames, Rep. Math. Phys., 35 (1995), 77-99.
  • [2] P. Godlewski. Generally-covariant and GL(n,R)-invariant model of field of linear frames interacting with complex scalar field, Rep. Math. Phys., 38 (1996), 29-44.
  • [3] P. Godlewski, Generally-covariant and GL(n,R)-invariant model of field of linear frames interacting with a multiplet of complex scalar fields, Rep. Math. Phys., 40 (1997), 71-90.
  • [4] F. W. Hehl, J. Nitsch and P. van der Heyde, Gravitation and the Poincare Gauge Field Theory with Quadratic Lagrangians, in: General Relativity and Gravitation. One Hundred Years after the Birth of Albert Einstein, Vol. 1, Chap. 11, Plenum Press, New York, 1980, p. 329.
  • [5] W. Kopczyński, Problems with metric-teleparallel theories of gravitation, J. Phys. A: Math. Gen., 15 (1982), 493-506.
  • [6] C. K. Möller, On the crisis in the theory of gravitation and a possible solution, Matematisk-fysiske Meddelelser udgivet af Det Kongelige Danske Videnskabernes Selskab, 39 (1978), no. 13.
  • [7] C. Pel1egrini, and J. Plebanski, Tetrad fields and gravitational fields, Matematiskfysiske Skrifter udgivet af Det Kongelige Danske Videnskabernes Selskab, 2 (1963), no 4.
  • [8] J. Rzewuski, Field Theory, Part I - Classical Theory, PWN, Polish Scientific Publishers, Warszawa, 1964.
  • [9] J. J. Sławianowski, Field of linear frames as a fundamental self-interacting system, Rep. Math. Phys., 22 (1985), 323-371.
  • [10] J. J. Sławianowski, Lie-algebraic solutions of affinely-invariant equations for the field of linear frames, Rep. Math. Phys., 23 (1986), 177-197.
  • [11] J. J. Sławianowski, GL(n,R) as a candidate for fundamental symmetry in field theory, Nuovo Cimento, 106B (1991), 645-668.
  • [12] J. J. Sławianowski, New approach to the U(2,2)-symmetry in spinor and gravitation theory, Fortschritte der Physik, 44 (1996), 105-141.
  • [13] J. J. Sławianowski, U(2,2)-symmetry as a common basis for quantum theory and geometrodynamics, Intern. J. Theor. Phys., 37 (1998), 411-420.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0011-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.