PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Free actions of semiprime rings with involution induced a derivation

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let R be an associative ring. An element a is an element of R is said to be dependent of a mapping F : R -> R in case F (x) a = ax holds for all x is an element of R. A mapping F : R -> R is called a free action in case zero is the only dependent element of F. In this paper free actions of semiprime *- rings induced by a derivation are considered. We prove, for example, that in case we have a derivation D : R -> R, where R is a semiprime *-ring, then the mapping F defined by F(x) = D(x*) + D(x)*,x is an element of R, is a free action. It is also proved that any Jordan *-derivation on a 2-torsion free semiprime *-ring is a free action.
Wydawca
Rocznik
Strony
811--817
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
  • Department of Mathematics, University of Maribor, PEF, Koroska 160, 2000 Maribor, Slovenia
Bibliografia
  • [1] M. Brešar, Jordan derivations on semiprime ring, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.
  • [2] M. Brešar, J. Vukman, On some additive mappings in rings with involution, Aequationes Math. 38 (1989), 178-185.
  • [3] H. Choda, I. Kasahara and R. Nakamoto, Dependent elements of automorphisms of a C*-algebra, Proc. Japan Acad. 48 (1972), 561-565.
  • [4] H. Choda, On freely acting automorphisms of operator algebras, Kodai Math. Sem. Rep. 26 ( 1974), 1-21.
  • [5] H. Choda and Y. Watatani, Subfreely acting automorphisms of operator algebras, Mat. Japonica 26 (1981), 223-232.
  • [6] J. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324.
  • [7] R. R. Kallman, A generalization of free action, Duke Math. J. 36 (1969), 781-789.
  • [8] A. Laradji and A. B. Thaheem, On dependent elements in semiprime rings, Mat. Japonica 47 (1998), 29-31.
  • [9] F. J. Murray and J. von Neumann, On range of operators, Ann. Math. 37 (1936), 116-229.
  • [10] J. von Neumann, On rings of operators III, Ann. Math. 41 (1940), 94-161.
  • [11] S. Stratila, Modular Theory in Operator Algebras, Abacus Press, Kent, 1981.
  • [12] P. Šemrl, On quadratic functionals, Bull. Austral. Math. Soc. 37 (1988), 27-28.
  • [13] P. Šemrl, Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc. 119 (1993), 1105-1113.
  • [14] P. Šemrl, Jordan *- derivations of standard operator algebras, Proc. Amer. Math. Soc. 120 (1994), 515-518.
  • [15] J. Vukman, A result concerning additive functions in hermitian Banach *- algebras and an application, Proc. Amer. Math. Soc., Vol. 91 (1984), 367-372.
  • [16] J. Vukman, A result concerning additive functions in hermitian Banach * - algebras and an application, Proc. Amer. Math. Soc. 91 (1984), 367-372.
  • [17] J. Vukman, Some results concerning the Cauchy functional equation in certain Banach algebras, Bull. Austral. Math. Soc., Vol. 31 (1985), 137-144.
  • [18] J. Vukman, Some functional equations in Banach algebras and an application, Proc. Amer. Math. Soc., Vol. 100 (1987), 133-136.
  • [19] J. Vukman, I. Kosi-Ulbl, On dependent elements in rings, Internat. J. Math Sci 54 (2004) 2895-2906.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0011-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.