Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Clones are sets of operations on a given base set which are closed under superposition of operations and which contain all the projection operations. A clone can be regarded as a heterogeneous or multi-based algebra, consisting of universe sets of n-ary operations, for n > 1, with the superposition operations Snm, for n,m > 1. Such an algebra is called a Menger system. For a fixed n, a set of n-ary operations with the (n + 1)-ary superposition operation Sn forms a homogeneous algebra called a Menger algebra of rank n. These structures can also be defined on sets of term operations of a fixed type r. The set of all terms of type r which contain at least one operation symbol forms such a clone-like structure which we call the pre-clone of type r. We determine a generating system for this pre-clone. A similar structure can be formed using the terms with respect to a variety, giving the pre-clone of a variety. The normalization of a variety is the model class of all identities s~~t of the variety for which both s and t contain at least one operation symbol. We show that identities in the pre-clone of the normalization of a variety correspond to normal hyperidentities in the normalization.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
799--810
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
- University of Potsdam, Institute of Mathematics, Am Neuen Palais, 14415 Potsdam, Germany
autor
- University of Lethbridge, Mathematics Department, Lethbridge, Alberta, Canada T1K-3M4
Bibliografia
- [1] I. Chajda, Normally presented varieties, Algebra Universalis, 34 (1995), 327-335.
- [2] K. Denecke, Pre-solid varieties, Demonstratio Math. 27, No 3-4 (1994), 741-750.
- [3] K. Denecke, P. Jampachon, Clones of full terms, to appear in Algebra and Discrete Math.
- [4] K. Denecke, J. Płonka, Regularization and normalization of solid varieties, General Algebra and Discrete Mathematics (Potsdam, 1993), 83-92, Res. Exp. Math., 21, Heldermann, Lemgo, 1995.
- [5] K. Denecke, M. Reichel, Monoids of hypersubstitutions and M-solid varieties, Contrib. Gen. Algebra 9 (1995), 117-126.
- [6] K. Denecke, S. L. Wismath, Complexity, composition and hypersubstitution, Int. J . Math. Math. Sci., 15 (2003), 959-969.
- [7] K. Denecke, S. L. Wismath, Valuations of terms, Algebra Universalis 50 (2003), no. 1, 107-128.
- [8] K. Denecke, S. L. Wismath, Normalizations of clones, in: Contributions to General Algebra 16, Verlag Johannes Hein, Klagenfurth 2005, pp. 63-73.
- [9] E. Graczyńska, On normal and regular identities and hyperidentities, Universal and Applied Algebra, Turawa, Poland, May 1988, World Scientific (1989), 107-135.
- [10] I. I . Mel'nik, Nilpotent shifts of varieties, (in Russian), Mat. Zametki, 14 No. 5 (1973), English translation in: Math. Notes 14 (1973), 962-966.
- [11] B. Schein, V. S. Trochimenko, Algebras of multiplace functions, Semigroup Forum 17 (1979), 1-64.
- [12] W. Taylor, Hyperidentities and hypervarieties, Aequationes Math. 23 (1981), 111-127.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0011-0004