PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie programu SYSWELD w modelowaniu resztkowych naprężeń pospawalniczych

Identyfikatory
Warianty tytułu
EN
Application of SYSWELD program to modelling residual postwelding stresses
Języki publikacji
PL
Abstrakty
PL
Praca jest kontynuacją artykułów [27, 28], w których zastosowano teorię nieustalonego przepływu ciepła z uwzględnieniem przejść fazowych stali. Zaprezentowana w [28] symulacja numeryczna procesów termometalurgicznych wywołanych poruszającym się źródłem ciepła jest w tej pracy punktem wyjścia do analizy odkształceń trwałych i naprężeń resztkowych w połączeniach spawanych blach stalowych. W celu sformułowania zagadnienia ze sprzężeniem pól termicznych i metalurgicznych z polami mechanicznymi, zastosowano teorię mieszanin oraz teorię sprężystości i plastyczności w ramach teorii zmiennych wewnętrznych. Szczególną uwagę zwrócono na sposób przygotowania kompletu niezbędnych danych termiczno-metalurgiczno-mechanicznych poszczególnych faz stali, które konieczne są w symulacji procesu spawania. Rozwiązania zadań modelujących połączenie czołowe i pachwinowe blach stalowych uzyskano, stosując metodę elementów skończonych (MES) i programy SYSTUS [62], SYSWELD [63-65] i SYSWORLD [66].
EN
The paper is a continuation of [27, 28], where phenomenological theory of unsteady heat flow including phase change phenomena in steel is applied. A numerical simulations of termo-metallurgical processes due to moving heat source were basic for analysis of permanent deformation and residual stresses in the welded steel joints. The mixture theory, theory of elasticity and plasticity based of internal variables framework are used to formulate coupling of thermo-metallurgical with mechanical fields. The way of preparing of thermo-mechano-metallurgical data for each phase needed for welding simulation is strongly emphasized. The finite element method and programs: SYSTUS [62], SYSWELD [63-65] and SYSWORLD [66] are used to model and solve the problem of butt joints of steel blanks.
Rocznik
Tom
Strony
65--93
Opis fizyczny
Bibliogr. 85 poz., tab., rys., wykr.
Twórcy
autor
  • Instytut Mechaniki i Konstrukcji Inżynierskich, Wydział Inżynierii Lądowej, Politechnika Warszawska
autor
  • Instytut Mechaniki i Konstrukcji Inżynierskich, Wydział Inżynierii Lądowej, Politechnika Warszawska
Bibliografia
  • [1] ABAQUS Theory manual, Version 6.1. Hibbitt, Karlsson and Sorensen. Inc., Pawtucket, 2000.
  • [2] ABAQUS/Standard User's manual, Version 6.1. Hibbitt, Karlsson and Sorensen. Inc., Pawtucket, 2000.
  • [3] Abdel-Tawab K., Noor A.K.: Uncertainty analysis of welding residual stress fields. Comput. Methods Appl. Mech. Engrg., 179, 1999, pp. 327-344.
  • [4] Alberg H., Berglund D.: Comparison of plastic, viscoplastic, and creep models when modelling welding and stress relief heat treatment. Comput. Methods Appl. Mech. Enrgrg., 192, 2003, pp. 51189-5208.
  • [5] Bachorski A., Painter M.J., Smailes A.J., Wahab M.A.: Finite-element prediction of distortion during gas metal arc welding using the shrinkage volume approach. J. of Materials Processing Technology, 92-93, 1999, pp. 405-409.
  • [6] Bae K.-Y., Na S.-J.: An analysis of thermal stress and distortion in bead-on-plate welding using laminated isotropic plate theory. J. Materials Processing Technology, 57, 1996, pp. 337-344.
  • [7] Bokota A., Iskierka S.: Numeric.al analysis of phase transformation and residual stresses in steel cone-shaped elements hardened by induction and flame methods. Int. J. Mech. Sci., 40, 6, 1998, pp. 617-629.
  • [8] Boley B.A., Weiner J.H.: Theory of thermal stresses. John Wiley and Sons, New York 1960.
  • [9] Butnicki S.: Spawalność i kruchość stali. WNT, Warszawa 1979.
  • [10] Carmignani C., Mares R., Toselli G.: Transient finite element analysis of deep penetration laser welding in a singlepass butt-welded thick steel plate. Comput. Methods Appl. Mech. Engrg., 179, 1999, pp. 197-214.
  • [11] Chen B., Peng X.H., Nong S.N., Liang X.C.: An incremental constitutive relationship incorporating phase transformation with the application to stress analysis for the quenching process. J. Materials Processing Technology, 122, 2002, pp. 208-212.
  • [12] Cherkaoui M. , Berveiller M., Sabar H.: Micromechanical modelling of martensitic transformation induced plasticity (trip) in austenitic single crystals. Int. J. of Plasticity, 14, 7, 1998, pp. 597-626.
  • [13] Coret M., Calloch S., Combescure A.: Experimental study of the· phase transformation plasticity of 16MND5 low carbon steel under multiaxial loading. Int. J. of Plasticity, 18, 2002, pp. 1707-1727.
  • [14] Caret M., Combescure A.: A mesomodel for the numerical simulation of the multiphasic behavior of materials under anisothermal loading (application to two low-carbon steel). Int. J. of Mechanical Sciences, 44, 2002, pp. 1947-1963.
  • [15] Czyrski W., Pilarczyk J.: Spawanie stali. PWT, Warszawa 1960.
  • [16] Fisher F.D., Oberaigner E.R., Tanaka K., Nishimura F.: Transformation induced plasticity revised and updated formulation. Int. J. Solids Structures, 35, 1998, pp. 2209-2227.
  • [17] Fisher F.D., Reisner G., Werner E., Tanaka K., Cailletaud G., Antretter T.: A new view on transformation induced plasticity (TRIP). Int. J. of Plasticity, 16, 2000, pp. 723-748.
  • [18] Gamsjäger E., Antretter T., Schmaranzer C., Preis W., Chimani C.M., Simha N.K., Svoboda J., Fischer F.D.: Diffusional phase transformation and deformation in steels. Computational Materials and Science, 25, 2002, pp. 92-99.
  • [19] Gür C.H., Tekkaya A.E.: Numerical investigation of non-homogeneous plastic deformation in quenching process. Materials Science and Engineering, A319-321, 2001, pp. 164-169.
  • [20] Hackmair C., Werner E., Ponisch M.: Application of welding simulation for chassis components within the development manufacturing methods. Computational Materials Science, 28, 2003, pp. 540-547.
  • [21] Han H.N., Lee J.K., Kim H.J., Jin Y.-S.: A model for deformation, temperature and phase transformation behavior of steels on run-out table in hot strip mill. J. Materials Processing Technology, 128, 2002, pp. 216-225.
  • [22] Han H.N., Suh D.-W.: A model for transformation plasticity during bainite transformation of steel under external stress. Acta Materialia, 51, 2003, pp. 4907-4917.
  • [23] Heming Ch., Xieqing H., Honggang W.: Calculation of the residual stress of a 45 steel cylinder with a non-linear surface heat-transfer coefficient including phase transformation during quenching. J. Materials Processing Technology, 89-90, 1999, pp. 339-343.
  • [24] Romberg D.: A mathematical model for induction hardening including mechanical effect. Nonlinear Analysis: Real World Applications, 5, 2004, pp. 55-90.
  • [25] Huespe A.E., Cardona A., Fachinotti V.: Thermomechanical model of a continuous casting process. Comput. Methods Appl. Mech. Engrg., 182, 2000, pp. 439-455.
  • [26] Jakubiec M., Lesiński K., Czajkowski H.: Technologia konstrukcji spawanych. WNT, Warszawa 1980.
  • [27] Jemioło S., Gajewski M.: Symulacja MES obróbki cieplnej wyrobów stalowych z uwzględnieniem zjawisk termometalurgicznych. Część 1. Nieustalony przepływ ciepła z uwzględnieniem przejść fazowych. Zeszyty Naukowe, Budownictwo, z. 143, Oficyna Wydawnicza PW, Warszawa 2005.
  • [28] Jemioło S., Gajewski M.: Symulacja MES obróbki cieplnej wyrobów stalowych z uwzględnieniem zjawisk termometalurgicznych. Część 2. Przykłady numeryczne z zastosowaniem programu SYSWELD. Zeszyty Naukowe, Budownictwo, z. 143, Oficyna Wydawnicza PW, Warszawa 2005.
  • [29] Jemioło S., Giżejowski M.: Modele konstytutywne ze zmiennymi wewnętrznymi do opisu zachowania się stali. Cz. 1: Podstawy termodynamiczne. Cz. 2: Modele lepkoplastyczności i plastyczności. Prace Naukowe, Budownictwo, z. 138, Oficyna Wydawnicza PW, Warszawa 2001, str. 99-150.
  • [30] Ju D.-Y., Liu Ch., Inoue T.: Numerical modeling and simulation of carburized and nitrided quenching process. J. of Materials Processing Technology, 134-144, 2003, pp. 880-885.
  • [31] Kleiber M. [red]: Mechanika techniczna. Tom 11. Komputerowe metody mechaniki cial stalych. PWN, Warszawa 1995.
  • [32] Lancaster J.F.: Metallurgy of welding. Third edition. George ALLEN & UNWIN, London 1980.
  • [33] Lebedev A.A., Kosarchuk V.V.: Influence of phase transformations on the mechanical properties of austenitic stainless. Int. J. of Plasticity, 16, 2000, pp. 749-767.
  • [34] Leblond J.B., Devaux J.: A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size. Acta Metall., 32, 1, 1984, pp. 137-146. ·
  • [35] Leblond J.B., Mottet G., Devaux J.: A theoretical and numerical approach to the plastic behavior of steels during phase transformations. (Derivation of general relations, II: Study of classical plasticity for ideal plastic phases. J. Mech. Phys. Solids, 34, 4, 1986, pp. 395-409, 411-432.
  • [36j Lindgren L.E., Häggblad H.-A., McDill J.M.J., Oddy A.: Automatic remeshing for three-dimensional finite element simulation of welding. Comput. Methods Appl. Mech. Engrg., 147, 1997, pp. 401-409.
  • [37] Lindgren L.E.: Finite element modelling and simulation of welding. Part 1: Increased complexity. Journal of Thermal Stresses, 24, 2001, pp. 141-192.
  • [38r Lindgren L.E.: Finite element modelling and simulation of welding. Part 2: Improved material modelling, Journal of Thermal Stresses, 24, 2001, pp. 1195-231.
  • [39] Lindgren L.E.: Finite element modelling and simulation of welding. Part 3: Efficiency and integration, Journal of Thermal Stresses, 24, 2001, pp. 305-334.
  • [40] Lis A.K.: Mechanical properties and microstructure of ULCB steels affected by thermomechanical rolling, quenching and tempering. J. Materials Processing Technology, 106, 2000, pp. 212-218.
  • [41] Liu C.C., Xu X.J., Liu Z.: A FEM modelling of quenching and tempering and its application in industrial engineering. Finite Elements in Analysis and Design, 39, 2003, pp. 1053-1070.
  • [42] Lubliner J.: Plasticity theory. Macmillan Publishing Company, New York 1990.
  • [43] Markiewicz É., Drazétic P.: Experimental and local/global numerical characterization of mechanical strength for spot-welded assemblies. Mécanique and Industries, 4, 2003, pp. 17-27.
  • [44] Moulik P.N., Yang H.T.Y., Chandrasekar S.: Simulation of thermal stresses due to grinding. Int. J. of Mechanical Sciences, 43, 2001, pp. 831-851.
  • [45] Muraki T., Bryan J.J., Masubuchi K.: Analysis of thermal stresses and metal movement during welding. Part I: Analytical study. Transactions of the ASME. Journal of Engineering Materials and Technology, 97, 1, 1975, pp. 81-84.
  • [46] Muraki T., Bryan J.J., Masubuchi K.: Analysis of thermal stresses and metal movement during welding. Part II: Comparison of experimental data and analytical results. Transactions of the ASME. Journal of Engineering Materials and Technology, 97, 1, 1975, pp. 85-91.
  • [47] Murthy Y.V.L.N., Rao G.V., Iyer P.K.: Numerical simulation of welding and quenching processes using transient thermal and thermo-elasto-plastic formulations. Computers and Structures, 60, 1, 1996, pp. 131-154.
  • [48] Nowacki W.K. (red.), Podstawy termodynamiki materiałów z pamięcią kształtu, PAN IPPT, Warszawa 1996.
  • [49] Oliver G.J.: A Mathematical Consistent Fully Coupled Thermo-Mechano-Metallurgical Model of Welding. Praca doktorska, IPPT PAN, Warszawa 1999.
  • [50] Rhima A.B., Bessrour J., Bouhafs M., Khadrani R.: An idealization of the residual stresses genesis in heat treatments by a laser moving source. Int. J. of Thermal Sciences, 42, 2003, pp. 759-776.
  • [51] Roelens J.-B.: Numerical simulation of some multipass submerged arc welding - Determination of the residual stress and comparison with experimental measurements. Welding in the World, 35, 1995, pp. 110-117.
  • [52] Rońda J., Estrin Y., Oliver G.J.: Modelling of welding. A comparison of a thermo-mechano-metallurgical constitutive model with a thermo-viscoplastic material model. J. Materials Processing Technology, 60, 1996, pp. 629-636.
  • [53] Rońda J., Murakawa H., Nogi K., Ushio M.: Enhanced method of heat sources in welding and plasma spraying (1st Report) - Overview of simple thermal plasma models. Trans. JWRI, 31, 1, 2002, pp. 1-11.
  • [54] Rońda J., Murakawa H., Nogi K., Ushio M.: Enhanced method of heat sources in welding and plasma spraying (2nd Report) - Examples of thermal plasma models. Trans. JWRI, in print.
  • [55] Rońda J., Oliver G.J.: Comparison of applicability of various thermo-viscoplastic constitutive models in modelling of welding. Comput. Methods Appl. Mech. Engrg., 153, 1998, pp. 195-221.
  • [56] Runnemalm H., Hyun S.: Three-dimensional welding analysis using an adaptive mesh scheme. Comput. Methods Appl. Mech. Engrg., 188, 2000, pp. 515-523.
  • [57] Sarkani S., Trurchkov V., Michaeiov G.: An efficient approach for computing residual stresses in welded joints. Finite Elements in Analysis and Design, 35, 2000, pp. 247-268.
  • [58] Sedláček R., Blum W.: Microstructure-based constitutive law of plastic deformation. Computational Materials Science, 25, 2002, pp. 200-206.
  • [59] Shi Q., Lu A., Zhao H., Wu A.: Development and application of the adaptive mesh technique in the three-dimensional numerical simulation of the welding process. J. Materials Processing Technology, 121, 2002, pp. 167-172.
  • [60] Silva E.P., Pacheco P.M.C.L., Savi M.A.: On the thermo-mechanical coupling in austenite-martensite phase transformation related to the quenching process. Int. J. of Solids and Structures, 41, 2004, pp. 1139-1155.
  • [61] Simo J.C., Taylor R.L.: Consistent tangent operators for rate independent elasto-plastictiy. Computer Methods in Applied Mechanics and Engineering, 48, 1985, pp. 101-118.
  • [62] SYSTUS™ 2000, Heat Transfer Reference Manual. ESI Group. The Virtual Try-Out Space Company.
  • [63] SYSWELD™ 2000, Reference Manual. ESI Group. The Virtual Try-Out Space Company.
  • [64] SYSWELD™ 2000, Example Manual. ESI Group. The Virtual Try-Out Space Company.
  • [65] SYSWELD™ 2003, Reference Manual. ESI Group. The Virtual Try-Out Space Company.
  • [66] SYSWORLD™ 2000, Technical Description of Capabilities. ESI Group. The Virtual Try-Out Space Company.
  • [67] Šittner P., Novăk V.: Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals. Int. J. of Plasticity, 16, 2000, pp. 1243-1268.
  • [68] Taleb L., Cavallo N., Waeckel F.: Experimental analysis of transformation plasticity. Int. J. of Plasticity, 17, 2001, pp. 1-20.
  • [69] Taleb L., Sidoroff F.: A micromechanical modeling of the Greenwood-Johnson mechanism in transformation induced plasticity. Int. J. of Plasticity, 19, 2003, pp. 1821-1842.
  • [70] Taylor G.A., Hughes M., Strusevivch N., Pericleous K.: Finite volume methods applied to the computational modeling of welding phenomena. Applied Mathematical Modelling, 26, 2002, pp. 309-320.
  • [71] Teixeira-Dias F., Menezes L.F.: A kinematic and incremental integration model for the micromechanical numerical analysis of dual-phase materials. Computational Materials Science, 25, 2002, pp. 237-245.
  • [72] Teng T.-L., Lin Ch.-Ch.: Effect of welding conditions on residual stresses due to butt welds. Int. J. Pressure Vessels and Piping, 75, 1998, pp. 857-864.
  • [73] Teng T.-L., Chang P.-H., Ko H.-Ch.: Finite element analysis of circular patch welds. Int. J. Pressure Vessels and Piping, 77, 2000, pp. 643-650.
  • [74] Teng T.-L., Fung Ch.-P., Chang P.-H., Yang W.-Ch.: Analysis of residual stresses and distortions in T-joint fillet welds. Int. J. Pressure Vessels and Piping, 78, 2001, pp. 523-538.
  • [75] Toyoda M., Mochizuki M.: Control of mechanical properties in structural steel welds by numerical simulation of coupling among temperature, microstructure, and macro-mechanics. Science and Technology of Advanced Materials, 5, 2004, pp. 255-266.
  • [76] Tsirkas S.A., Papanikos P., Kermanidis Th.: Numerical simulation of the laser welding process in buttjoint specimens. J. Materials Processing Technology, 134, 2003, pp. 59-69.
  • [77] Ulysse P.: Three-dimensional modeling of the friction stir-welding process. Int. J. of Machine Tools and Manufacture, 42, 2002, pp. 1549-1557.
  • [78] Vincent Y., Bergheau J.-M., Leblond J.-B.: Viscoplastic behaviour of steels during phase transformations. C.R. Mecanique, 331, 2003, pp. 587-594.
  • [79] Wang H. G., Guan Y .H., Chen T.L., Zhang J.T.: A study of thermal stresses during laser quenching. J. Materials Processing Technology, 63, 1997, pp. 550-553.
  • [80] Wen S.W., Hilton P., Farrugia D.C.J.: Finite element modeling of submerged arc welding process. J. Materials Processing Technology, 119, 2001, pp. 203-209.
  • [81] Yan W., Wang Ch.H., Zhang X.P., May Y.-W.: Theoretical modelling effect of plasticity on reserve transformation in superelastic shape memory alloys. Materials Science and Engineering, A354, 2003, pp. 146-157.
  • [82] Zhang Z.L., Ødegård J., Myhr O.R., Fjaer H.: From microstructure to deformation and fracture behavior of aluminium welded joints - a holistic modeling approach. Computational Materials Science, 21, 2001, pp. 429-435.
  • [83] Zhao J.-C., Notis M.R.: Continuous cooling transformation kinetics versus isothermal transformation kinetics of steels: a phenomenological rationalization of experiment observations. Reports: A Review Journal. Materials Science and Engineering, A15, 1995, pp. 135-208.
  • [84] Zhu X.K., Chao Y.J.: Effects of temperature-dependent material properties on welding simulation. Computers and Structures, 80, 2002, pp. 967-976.
  • [85] Zienkiewicz O.C., Taylor R.L.: The finite element method. McGraw Hill, 4th edition, Volumes 1 and 2, 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0010-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.