PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An elementary proof a Schwarz lemma for the symmetrized bidisc

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Agler-Young obtained a Schwarz lemma for the symmetrized bidisc. Their proof uses an earlier result of them whose proof is operator-theoretic in nature. They posed the question to give an elementary proof of the Schwarz lemma for the symmetrized bidisc. In this paper, we give an elementary proof of the Schwarz lemma for the symmetrized bidisc.
Słowa kluczowe
Wydawca
Rocznik
Strony
329--334
Opis fizyczny
Bibliogr. 5 poz.
Twórcy
autor
  • Faculty of Engineering, Kyushu Sangyo University, 3-1 Matsukadai 2-chome, Higashi-Ku, Fukuoka 813-8503, Japan
autor
  • Faculty of Engineering, Kyushu Sangyo University, 3-1 Matsukadai 2-chome, Higashi-Ku, Fukuoka 813-8503, Japan
Bibliografia
  • [1] J. Agler, N. J. Young, A commutant lifting theorem for a domain in C2 and spectral interpolation, J. Funct. Anal. 161 (1999), 452-477.
  • [2] J. Agler, N. J. Young, A Schwarz lemma for the symmetrized bidisc, Bull. London Math. Soc. 33 (2001), 175-186.
  • [3] Matlab μ-analysis and synthesis toolbox, The MathWorks Inc., Natick, MA, http://www.mathworks.com/products/muanalysis/.
  • [4] V. Pták, N. J. Young, A generalization of the zero location theorem of Schur and Cohn, IEEE Trans. Automat. Control 25 (1980), 978-980.
  • [5] I. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind, J. für Math. 147 (1917), 205-232, 148 (1918), 122-145.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0009-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.