Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a zero-order mathematical model based on first law analysis of the Thermochemical Energy Conversion (TCEC) process of concentrated solar energy have been developed. The model assumptions consider the general case for which the receiver/reactor is the direct volumetric absorption and/or indirect receiver/reactor. The thermal decomposition of a single chemical species and endothermic reversible chemical reaction is considered as the reaction system. A qualitative comparison of the model results gave a satisfactory agreement with selected experimental results. The proposed model was used to compare the general thermochemical behavior of the three general types of receivers/reactors proposed for the TCEC process operating in both continuous and in the discontinuous flow regimes. Comparison of the thermal characteristics of the TCEC process with other traditional conversion processes was also performed. Finally, conclusions were drawn to assist any further development and understanding of the TCEC process.
W artykule zaproponowano zerowymiarowy model układu odbiornik promieniowania/reaktor chemiczny umożliwiający analizę energetyczną termochemicznej konwersji energii (TCEC) promieniowania słonecznego. Model ten opisuje ogólny przypadek, gdy pochłanianie promieniowania słonecznego odbywa się na powierzchni lub w objętości odbiornika/reaktora. W reaktorze zachodzi endotermiczna, odwracalna reakcja chemiczna związana z rozkładem pojedynczej substancji. Jakościowe porównanie wyników otrzymanych z modelu z wynikami wybranych badań doświadczalnych, zamieszczonych w literaturze, dało zadawalający rezultat. Następnie wykorzystano opracowany model do analizy porównawczej zachowania trzech typów układu odbiornik promieniowania/reaktor zaproponowanych do realizacji procesu TCEC i pracujących przy ciągłym przepływie czynnika roboczego przez reaktor oraz przy braku przepływu czynnika. Dokonano porównania charkterystyk cieplnych procesu TCEC z innymi klasycznymi procesami konwersji energii promieniowania słonecznego. Pracę zakończono wnioskami dotyczącymi dalszego rozwoju i rozumienia procesu termochemicznej konwersji energii promieniowania słonecznego.
Rocznik
Tom
Strony
59--83
Opis fizyczny
Bibliogr. 31 poz., tab., wykr.
Twórcy
Bibliografia
- [1] Amhalhel G.A., Furmański P.: Problems of modeling flow and heat transfer in porous media. Bulletin of the Institute of Heat Engineering, Warsaw University of Technology, 85, 1997, pp. 55-88.
- [2] Amhalhel G.A., Furmański P.: Theoretical and technical aspects of thermochemical energy conversion of concentrated solar energy. Bulletin of the Institute of Heat Engineering, Warsaw University of Technology, 89/90, 2004, pp. 25-58.
- [3] Amhalhel G.: Thermodynamic analysis of thermochemical energy conversion of concentrated solar radiation. Ph. D. Thesis, Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, 1998.
- [4] Meirovitch E.A. Segal, Levy M.: Theoretical modeling of a directly heated solar-driven chemical reactor. Solar Energy, 45, 1990, no. 3, pp. 139-148.
- [5] Meirovitch E.: Distinctive properties of tubular solar chemical reactors. Trans. ASME J. Solar Energy Eng., 133, 1991, pp. 188-193.
- [6] Hogan Jr. R.E., Skocypec R.D.: Analysis of catalytically enhanced solar absorption chemical reactors: Part I - Basic concepts and numerical model description. Trans. ASME, J. Solar Energy Eng., 114, 1992, pp. 106-111.
- [7] Skocypec R.D., Hogan Jr. R.E.: Analysis of catalytically enhanced solar absorption chemical reactors: Part II - Predicted characteristics of a 100 kW reactor. Trans. ASME, J. Solar Energy Eng., 114, 1992, pp. 112-118.
- [8] Chubb T.A.: Analysis of gas dissociation solar thermal power system. Solar Energy, 17, 1975, pp. 129-136.
- [9] Chubb T.A., Nemecek J.J., Simmons D.E.: Application of chemical engineering to large scale solar energy. Solar Energy, 20, 1978, pp. 219-224.
- [10] Fish J.D., Hawn D.C.: Closed loop thermochemical energy transport based on C02 reforming of methane: balancing the reaction system. Trans. ASME, J. Solar Energy Eng., 109, 1987, pp. 215-220.
- [11] Prengle Jr. H.W., Sun C.H.: Operational chemical storage cycles for utilization of solar energy to produce heat or electric power. Solar energy, 18, 1976, pp. 561-567.
- [12] Williams O.M.: Thermochemical energy transport costs for a distributed solar power plant. Solar Energy, 20, 1978, pp. 333-342.
- [13] Won Y.S, Voecks G.E., McCrary J.H.: Experimental and theoretical study of a solar thermochemical receiver module. Solar Energy, 37, 1986, no. 2, pp. 109-118.
- [14] Levy M.R., Levitan Ε., Meirovitch Α., Segal Η., Rosin, Rubin R.: Chemical reactions in a solar furnace 2: Direct heating of a vertical reactor in an insulated receiver. Experiments and computer simulations. Solar Energy, 48, 1992, pp. 395-402.
- [15] Bdie J.M., Bonet В., Faure Μ., Flamant G.: Decarbonation of calcite and phosphate rock in solar chemical reactors, Chem. Eng. Sei., 35, 1980, pp. 413-420.
- [16] Flamant G.: Experimental aspects of the thermochemical conversion of solar energy; decarbonation of CaC03. Solar Energy, 24, 1980, pp. 385-395.
- [17] Flamant G.: Thermochimie solaire: Etude de precedes. Application a la decarbonatation de la calcite. These de Docteur Ingenieure, Universite Paul Sabatier, Toulouse 1978.
- [18] Salman O.A., Khraishi N.: Thermal decomposition of limestone and gypsum by solar energy. Solar Energy, 41, 1988, no. 4, pp. 305-308.
- [19] Szarawara J.: Thermodynamika Chemiczna. Wydawnictwa Naukowo Techniczne, 2nd. ed. Warszawa 1985.
- [20] Flamant G., Menigault Т.: Combined wall to fluidized bed heat transfer: Bubbles and emulsion contributions at .high temperature. Int. J. Heat & Mass Transfer, 30, 1987, no. 9, pp. 1803-1812.
- [21] Flamant G„ Gauthier D„ Boudhari C., Flitris Y.: A 50 kW Fluidized bed high temperature solar receiver: Heat transfer analysis. Trans. ASME, J. Solar Energy Engg., 110, 1988, pp. 313-320.
- [22] Flamant G., Olalde G.: High temperature solar gas heating comparison between packed and fluidized bed receivers. Solar Energy, 31, 1983, no. 5, pp. 463-471.
- [23] Skocypec R.D., Boehm R.F., Chavez J.M.: Heat transfer modeling of the IEA/SSPS volumetric receiver. ASME J., Solar Energy Engg., I l l , 1989, pp. 138a-143.
- [24] Onyegegbu S.O., Morhenne J.: Transient multidimensional second law analysis of time-varying insolation with diffuse component. Solar Energy, 50, 1993, no. 1, pp. 85-95.
- [25] Domański R., Giuma Fellah: Exergy as a tool for designing and operating thermal storage systems. Bulletin of Institute of Heat Engineering, Warsaw University of Technology, 81, 1995, pp. 23-45.
- [26] Bjurstrom Η., Bo Carlsson: An exergy analysis of sensible and latent heat storage. Heat Recovery systems, 5, 1985, no. 3, pp. 233-250.
- [27] Sozen Z.Z., Grace J.R., Kenneth L.P.: Thermal energy storage by agitated capsules of phase change material. 1: Pilot scale experiments. Ind. Eng. Chem. Res., 27, 1988, pp. 679-684.
- [28] Sozen Z.Z., Grace J.R., Kenneth L.P.: Thermal energy storage by agitated capsules of phase change material. 2: Cases of efficiency loss. Ind. Eng. Chem. Res., 27, 1988, pp. 684-691.
- [29] Szargut J.: International progress in second law analysis. Energy, 5, 1980, pp. 709-718.
- [30] Domański R., Fellah G.: Thermoeconomic analysis of sensible heat thermal energy storage systems. Applied Thermal Engineering, 18, 1998, no. 8, pp. 693-704.
- [31] Fellah G.: Exergy analysis for selected thermal energy storage units. Ph. D. Thesis, Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0008-0010