PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical and technical aspects of thermochemical conversion of concentrated solar energy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an up-to-date overview of the theoretical and technical aspects of thermo-chemical energy conversion (TCEC) systems of concentrated solar energy. The conventional methods of thermal energy conversion and TCEC systems are presented and their merits and demerits are summarized. The different types of TCEC systems and the main elements of the TCEC system are described. Problems associated with the application of these systems, with special emphasis on the receiver/reactor system, are discussed. The industrial importance of the TCEC process is also demonstrated. The state of the art and problems associated with the mathematical and experimental modeling of the TCEC process have also been discussed in more detail. Finally, suggestions as to further development of mathematical and experimental modeling of the TCEC process of concentrated solar energy are presented.
PL
W pracy przedstawiono przegląd teoretycznych i technicznych aspektów termochemicznej konwersji energii skoncentrowanego promieniowania słonecznego (TCEC). Omówiono i porównano klasyczne metody konwersji energii promieniowania słonecznego oraz układy oparte na TCEC. Opisano różne typy układów TCEC oraz ich poszczególne elementy składowe. Przedyskutowano różne problemy związane z zastosowaniem tych systemów ze szczególnym uwzględnieniem układu odbiornik promieniowania/reaktor chemiczny. Wskazano na potencjalne znaczenie TCEC w przemyśle. Szczegółowo omówiono również stopień zaawansowania modelowania matematycznego i badań eksperymentalnych tych układów oraz wskazano na kierunki dalszych badań.
Rocznik
Tom
Strony
25--58
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Heat Engineering
  • Institute of Heat Engineering
Bibliografia
  • [1] Abhat Α., Huy T.Q.: Heat and mass transfer considerations in a thermo-chemical energy storage system based on solid-gas reactions. Solar Energy, 30, 1983, no. 2, pp. 93-98.
  • [2] Amhalhel G.A., Furmański P.: Problems of modeling flow and heat transfer in porous media. Bulletin of Institute of Heat Engineering, Warsaw University of Technology, 85, 1997, pp. 55-88.
  • [3] Andersson J.M., Azoulay and J. De Pablo: Chemical heat pumping - a rapid experimental procedure for investigating the suitability of salt hydrates under dynamic conditions. Int. J. Energy Res., 12, 1988, pp. 137-145.
  • [4] Arai N.Y. Itaya, Hasatani M.: Development of a "volume heat trap" type solar collector using a fine-particle semitransparent liquid suspension (FPSS) as a heat vehicle and heat storage medium. Solar Energy, 32, 1984, no. 1, pp. 49-56.
  • [5] Armas В., Trombe F.: Chemical vapour deposition of molybdenum and tungsten borides by thermal decomposition of gaseous mixtures of halides on a solar "front chaud". Solar Energy, 15, 1973, pp. 67-73.
  • [6] Badie J.M., Bonet С., Faure Μ., Flamant G.: Decarbonation of calcite and phosphate rock in solar chemical reactors. Chem. Eng. Sci., 35, 1980, pp. 413-420.
  • [7] Brown D.R., La Marche J.L., Spanner G.E.: Chemical energy storage system for solar electric generating system (SEGS) solar thermal power plant. Trans. ASME. J. Solar Energy Eng., 114, 1992, pp. 212-218.
  • [8] Chadda D., Ford J.D., Fahim M.A.: Chemical energy storage by the reaction cycle Cu0/Cu20. Int. J. Energy Res., 13, 1989, pp. 63-73.
  • [9] Chion H., Mills A.F.: Heat and mass transfer in metal hydride beds for heat pump applications. Int. J. Heat & Mass Transfer, 33, 1990, no. 6, pp. 1281-1288.
  • [10] Chubb T.A.: Analysis of gas dissociation solar thermal power system. Solar Energy, 17, 1975, pp. 129-136.
  • [11] Chubb T.A.: Characteristics of C02-CH4 reforming-methanation cycle relevant to the Solchem thermochemical power system. Solar Energy, 24, 1980, pp. 341-345.
  • [12] Chubb T.A., Nemecek J.J., Simmons D.E.: Application of chemical engineering to large scale solar energy. Solar Energy, 20, 1978, pp. 219-224.
  • [13] Chubb T.A., Necmecek J.J., Simmons D.E.: Design of a small thermo-chemical receiver for solar thermal power. Solar Energy, 23, 1979, pp. 217-221.
  • [14] Clark J.A.: An analysis of the thechnical and economical performance of a parabolic through concentrator for solar industrial process heat application. Int. J. Heat & Mass Transfer, 25, 1982. no. 9, pp. 1427-1438.
  • [15] Close D.J., Dunkle R.V.: Use of adsorbent beds for energy storage in drying of heating systems. Solar Energy, 19, 1977, pp. 233-238.
  • [16] Cummings D.L., Powers G.J.: The storage of hydrogen as metal hydrides. Ind. Eng. Eng. Process Des. Develop, 13, 1974, no. 2, pp. 182-192.
  • [17] DeLancey G.B., Kovenklloglu S., Ritter A.R., Schneider J.C.: Cyclohexane dehydrogenation for thermochemical energy conversion. Ind. Eng. Process Des. Dev., 22, 1983, pp. 639-645.
  • [18] DeMaria G., D'Alessio L., Coffari E., Paolucci M„ Tiberio C.A.: Thermo-chemical storage of solar energy with high-temperature chemical reactions. Solar Energy, 35, 1985, no. 5, pp. 409-416.
  • [19] Diver R.B.: Receiver/reactor concepts for thermochemical transport of solar energy. TASME, J. Solar Energy Engg., 109, 1987, pp. 199-210.
  • [20] Domański R., Fellah G.: Exergy as a tool for designing and operating thermal storage units. Bulletin of Institute of Heat Engineering, Warsaw University of Technology, 81, 1995, pp. 24-45.
  • [21] Domański R., Fellah G.: Thermoeconomic analysis of sensible heat thermal energy storage systems. Applied Thermal Engineering, 18, 1998, no. 8, pp. 693-704.
  • [22] Fellah G.: Exergy analysis for selected thermal energy storage units. Ph. D. Thesis, Warsaw University of Technology, Faculty of Power and Aeronautical Engineering.
  • [23] Fish J.D., Hawn D.C.: Closed loop thermochemical energy transport based on C02 reforming of methane: balancing the reaction system. Trans. ASME, J. Solar Energy Eng., 109, 1987, pp. 215-220.
  • [24] Flamant G.: Experimental aspects of the thermochemical conversion of solar energy; decarbonation of CaCOj. Solar Energy, 24, 1980, pp. 385-395.
  • [25] Hogan R.E., Jr, Skocypec R.D.: Analysis of catalytically enhanced solar absorption chemical reactor: Part I - basic concepts and numerical model description. Trans. ASME, J. Solar Energy Engineering, 114, 1992, pp. 106-111.
  • [26] Lenz T.G., Hegedus L.S., Vaughan J.D.: Liquid phase thermochemical energy conversion systems - an application of diels-alder chemistry. Energy Res., 6, 1982, pp. 357-365.
  • [27] Levitan R., Rosin H., Levy M.: Chemical reactions in a solar furnace-direct heating of the reactor in a tubular receiver. Solar Energy, 42, 1989, no. 3, pp. 267-272.
  • [28] Levy M., Levitan R., Meirovitch E., Segal Α., Rosin H., Rubin R.: Chemical reactions in a solar furnace 2: Direct heating of a vertical reactor in an insulated receiver. Experiments and computer simulations. Solar Energy, 48, 1992, no. 6, pp. 395-402.
  • [29] Maw-Chwain L.: Chemical storage of solar energy - Reaction engineering of the ammonium hydrogen sulfate cycle. Ph. D dissertation, Uni. of Houston, 1983.
  • [30] McCrary J.H., McCrary G.E., Chubb T.A., Won T.S.: An experimental study of S03 dissociation as a mechanism for converting and transporting solar energy. Solar Energy, 27, 1981, no. 5, pp. 433-440.
  • [31] Meirovitch E.: Distinctive properties of tubular solar chemical reactors. Trans. ASME, J. Solar Energy Eng., 133, 1991, pp. 188-193.
  • [32] Meirovitch E., Segal Α., Levy M.: Theoretical modeling of a directly heated solar-driven chemical reactor. Solar Energy, 45, 1990, no. 3, pp. 139-148.
  • [33] Oelert G.: Thermochemical heat storage: state of the art report. Swedish Council for Building Research, Stockholm 1982.
  • [34] Oosawa Y., Takahashi R., Yonemura M., Sekine Т.: Proposal of a new H2S decomposition process using solar energy. Solar Energy, 39, 1987, no. 5, pp. 429-431.
  • [35] Prengle Jr. H.W., Sun C.H.: Operational chemical storage cycles for utilization of solar energy to produce heat or electric power. Solar energy, 18, 1976, pp. 561-567.
  • [36] Rozenman Т.: Energy transport with an integrated direct solar reactor. ASME, J. Solar Energy Eng., 109, 1987, no. 3, pp. 221-226.
  • [37] Salman O.A., Khraishi N.: Thermal decomposition of limestone and gypsum by solar energy. Solar Energy, 41, 1988, no. 4, pp. 305-308.
  • [38] Szargut J.: International progress in second law analysis. Energy, 5, 1980, pp. 709-718.
  • [39] Selvidge M., Miaoulis I.N.: Evaluation of reversible hydration reactions for use in thermal energy storage. Solar Energy, 44, 1990, no. 3, pp. 173-178.
  • [40] Skocypec R.D., Hogan R.E., Jr.: Analysis of catalytically enhanced solar absorption chemical reactors: Part II - Predicted characteristics of a 100 kW reactor. Trans. ASME, J. Solar Energy Eng., 114, 1992, pp. 112-118.
  • [41] Tmar M., Bernard C., Ducarroir M.: Local storage of solar energy by eversible reactions with sulfates. Solar Energy, 26, 1981, pp. 529-536.
  • [42] Williams O.M.: Thermochemical energy transport costs for a distributed solar power plant. Solar Energy, 20, 1978, pp. 333-342.
  • [43] Williams O.M., Carden P.O.: Screening reversible reactions for thermo-chemical energy transfer. Solar Energy, 22, 1979, pp. 191-193.
  • [44] Won Y.S., Voecks G.E., McCrary J.H.: Experimental and theoretical study of a solar thermo-chemical receiver module. Solar Energy, 37, 1986, no. 2, pp. 109-118.
  • [45] Wyman C., Castle J., Kreith F.: A review of collector and energy storage technology for intermediate temperature applications. Solar Energy, 24, 1980, pp. 517-540.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0008-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.