PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Turbulentny przepływ gazu w wypełnieniach o złożonej geometrii

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Eksperymentalne i numeryczne badania turbulentnego przepływu powietrza przeprowadzono w modelowych wypełnieniach, zbudowanych z kuł i różnych, aczkolwiek ściśle zdefiniowanych przegród. Umieszczone między kulami przegrody spełniały rolę promotorów lub inhibitorów turbulencji. Lokalną prędkość gazu oraz strukturę turbulencji wewnątrz modelowych układów badano przy użyciu termoanemometru, podczas gdy ilość przepływającego gazu i spadek jego ciśnienia mierzono za pomocą zwężki i mikromanometrów. Numeryczne symulacje turbulentnego przepływu gazu wykonano równolegle w trzech skalach przestrzennych. Charakterystyczne asymetrie rozkładów gęstości prawdopodobieństwa lokalnie zmierzonych fluktuacji prędkości gazu aproksymowano modelem uzasadniającym powiązanie kształtu tych rozkładów z kształtem profilu prędkości gazu uśrednionej w czasie. Z kolei, przestrzenne rozkłady tej prędkości oraz spadek ciśnienia gazu w reprezentatywnych fragmentach wypełnień pseudohomogenicznych wyliczono z użyciem standardowego modelu ^epsilon. Natomiast, modelowanie turbulentnego przepływu gazu w wypełnieniach tworzących bardziej złożone struktury przestrzenne przeprowadzono stosując model pseudohomoge-niczny lub makrokorelacje. Efektywność hybrydowej metody modelowania turbulentnych przepływów potwierdzono porównując wyniki numerycznych symulacji i doświadczeń wykonanych w każdej z wyróżnionych skal. Pokazano na wielu modelowych przykładach, w jaki sposób rozkład prędkości gazu i spadek jego ciśnienia zależą od kształtu i przestrzennego ułożenia poszczególnych elementów wypełnień niejednorodnych.
EN
The experimental and numerical investigations of air turbulent flow were performed in the model packings consisting of spheres and different obstacles of precisely defined shapes. The inserts played the role of turbulence promoters or inhibitors. The flow rate and the pressure drop within the model packings were measured using an orifice and micro-manometers, whereas the local gas velocity distribution and the turbulence structure were investigated using an thermo-anemometer. Numerical simulations were performed at three spatial scales. The characteristic shapes of the probability density distributions of measured flow fluctuations were approximated using a model indicating the relationship between the shapes of these distributions and the shape of the gas velocity profile averaged in time. Next, the flow patterns and pressure drop within representative units of pseudo--homogenous packings were numerically simulated using the standard /:-epsilon model. In the case of more complex packing structures a combined method of turbulent flow modelling was applied using the pseudo-homogenous model or macro-correlations. The measured and numerically predicted flow parameters reveal an acceptable level of agreement. As a result, the manner in which the pressure drop and the gas velocity distribution depend on the packing complex geometry has been presented.
Rocznik
Strony
3--135
Opis fizyczny
Bibliogr. 287 poz., rys., tab., wykr.
Twórcy
autor
  • Instytut Chemii Fizycznej PAN
Bibliografia
  • 1. Abdel-Rahman A.A., Al-Fahed S.F., Chakroun W. (1996). The near-field characteristics of circular jets at low Reynolds numbers, Mech. Res. Comm., 23 (3), 313-324.
  • 2. Al-Dahhan M.H., Larachi F., Dudukovic M.P., Laurent A. (1997). High-Pressure Trickle Bed Reactors: A Review, Ind. Eng. Chem. Res., 36, 3292-3314.
  • 3. Alvarez G., Boumet P.E., Flick D. (2003). Semi-empirical modeling of turbulent fluid flow and heat transfer in porous media, Int. J. Refrig., 26, 349-359.
  • 4. Antohe B.V., Lage J.L. (1997). A general two-equation macroscopic turbulence model for incompressible flow in porous media, Int. J. Heat Mass Transfer, 40 (13), 3013-3024.
  • 5. Attou A., Boyer C., Ferschneider G. (1999). Modeling of the hydrodynamics of the cocurrent gas-liquid trickle flow through a trickle-bed reactor, Chem. Eng. Sci., 54, 785-802.
  • 6. Bałdyga J., Bourne J.R. (1995). Interpretation of turbulent mixing using fractals and multifractals, Chem. Eng. Sci., 50, 381-400.
  • 7. Barrere J., Gipouloux O., Whitaker S. (1992). On the Closure Problem for Darcy’s Law, Transport in Porous Media, 7, 209-222.
  • 8. Bart H.J., Germerdonk R., Ning P. (1996). Numerical simulation of toluene adsorption on activated carbon in a technical column in low concentration range, Chem. Eng. Technol., 19 (4), 347-356.
  • 9. Bart H.J., Germerdonk R., Ning P. (1996). Two-dimensional non-isothermal model for toluene adsorption in a fixed-bed adsorber, Chem. Eng. Process., 35 (1), 57-64.
  • 10. Bartelmus G., Janecki D. (2003). Hydrodynamics of a cocurrent downflow of gas and foaming liquid through the packed bed. Part II. Liquid holdup and gas pressure drop; Chem. Eng. Process., 42, 993-1005.
  • 11. Basu S. (2001). Wall effect in laminar flow of non-Newtonian fluid through a packed bed, Chem. Eng. J., 81, 323-329.
  • 12. Beavers G.S., Joseph D.D. (1967). Boundary Conditions at a Naturally Permeable Wall, J. Fluid Mech., 30, 197.
  • 13. Belhouwer J.G., Piepers H.W., Drinkenburg A.A.H. (2002). Nature and characteristics of pulsing flow in trickle-bed reactors, Chem. Eng. Sci., 57, 4865-4876.
  • 14. Bennett D.L. (2000). Optimize Distiliation Columns - Part II: Packed columns. Chem. Eng. Progress, 96 (5), 27-34.
  • 15. Bennett D.L., Kovak K.W. (2000). Optimize Distillati?n Columns- Part 1: Trayed columns. Chem. Eng. Progress, 96 (5), 19-26.
  • 16. Bey O., Eigenberger G. (1997). Fluid flow through catalyst filled tubes, Chem. Eng. Sci., 52 (8), 1365-1376.
  • 17. Biggs M.J., Humby S.J. (1998). Lattice-gas authomata methods for engineering, Trans IChemE, 76 (Part A), 162-174.
  • 18. Billet R., Schultes M. (1999). Prediction of Mass Transfer Columns with Dumped and Arranged Packings: Updated Summary of the Calculation Method of Billet and Schultes, Trans. IChemE, 77 (Part A), 498-504.
  • 19. Blake F.C. (1922). The resistance of packing to fluid flow, Trans. AIChE, 14, 415-421.
  • 20. Borkink J.G.H., Westerterp K.R. (1994). Significance of the radial porosity profile for the description of heat transport in wall-cooled packed beds, Chem. Eng. Sci., 40 (6), 863-876.
  • 21. Bradshaw P., Launder B.E., Lumley J.L. (1996). Collaborative Testing of Turbulence Models, J. Fluid Eng., 118, 243.
  • 22. Brasquet C., Le Cloirec P. (2000). Pressure drop through textile fabrics - experimental data modeling using classical models and neural networks, Chem. Eng. Sci., 55, 2767-2778.
  • 23. Brinkman H.C. (1947). A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res. A, 1, 27.
  • 24. Brownell L.E., Dombrowski H.S., Dickey C.A. (1950). Pressure drop through porous media: Part IV - New data and revised correlation, Chem. Eng. Progress, 46 (8), 415-422.
  • 25. Brunazzi E., Paglianti A. (1997). Mechanistic Pressure Drop Model for Columns Containing Structured Packings, AIChE J., 43, 317-327.
  • 26. Burghardt A., Bartelmus G., Stasiak M. (1996). Hydrodynamika współprądowych reaktorów trójfazowych ze stałym złożem. Część II. Weryfikacja parametrów modelu hydrodynamicznego, Inż . Chem. Procesowa, 17 (2), 175-195.
  • 27. Burghardt A., Janecki D., Bartelmus G. (2001). Modelowanie hydrodynamiki trójfazowych reaktorów ze stałym złożem, Inż. Chem. Procesowa, 22 (313), 313-318.
  • 28. Burghardt A., Bartelmus G. (2001). Inżynieria reaktorów chemicznych, PWN, Warszawa.
  • 29. Burghardt A., Bartelmus G., Janecki D. (2003). Parameters characterising thepulsing flow of gas and foaming liquid through the packed bed. Part I. The frequency of pulsation and the structure of pulses; Inż. Chem. Proc., 24, 1-10.
  • 30. Burke S.P., Plumer W.B. (1928). Gas flow through packed columns, Ind. Eng. Chem., 20, 1196.
  • 31. Caillabet Y., Fabrie P., Landereau P., Noetinger B., Quintard M. (2000). Implementation of a finite-volume method for the determination of effective parameters in fissured porous media, Numer. Meth. Part D E, 16 (2), 237-263.
  • 32. Calis H.P.A., Nijenhuis J., Paikert C., Dautzenberg F.M., van den Bleek C.M. (2001). CFD modelling and experimental validation of pressure drop and flow profile in a novel catalytic reactor packing, Chem. Eng. Sci., 56, 1713-1720.
  • 33. Carbonell R.G. (2000). Multiphase Flow Models in Packed Beds, Oil & Gas Science and Technology - Rev. IFP, 55 (4), 417-425.
  • 34. Chaouki J., Larachi F., Dudukovic P. (1997). Noninvasive Tomographic and Velocimetric Monitoring of Multiphase Flows, Ind. Eng. Chem. Res., 56, 4476-4503.
  • 35. Chaumette P., Boucot P., Galtier P.H. (1996). EP Patent 0, 753, 562, A1.
  • 36. Cheng Z.M., Yuan W.K. (1997). Estimating Radial Velocity of Fixed Beds with Low Tube-to-Particle Diameter Ratios, AIChE J., 43 (5), 1319-1324.
  • 37. Chhabra R.P., Comiti J., Machač I. (2001). Flow of non-Newtonian fluids in fixed and fluidized beds, Chem. Eng. Sci., 56, 1-27.
  • 38. Chilton T.H., Colburn A.P. (1934). Mass transfer (absorbtion) coefficients - prediction from data on heat transfer and fluid friction, Ind. Eng. Chem, 26, 1183-1189.
  • 39. Choudhary M., Propster M., Szekely J. (1976). On the Importance of the Inertial Terms in the Modelling of Flow Maldistribution in Packed Beds, AIChE J., 22 (3), 600-603.
  • 40.Coberly C.A., Marshal W.R. (1951). Temperature gradients in gas streams flowing through fixed granular beds, Chem. Eng. Prog., 47, 141-150.
  • 41. Coelho D., Thovert J.-F., Adler P.M. (1997). Geometrical and transport properties of random packings of spheres and aspherical particles, Phys. Rev. E, 55 (2), 1959-1978.
  • 42. Cohen Y., Metzner A.B. (1981). Wall Effects in Laminar Flow of Fluids through Packed Beds, AIChE J., 27 (5), 705-715.
  • 43. Comiti J., Renaud M. (1989). A new model for determining mean structure parameters of fixed beds from pressure drop measurements: application to beds packed with parallelepipedal particles, Chem. Eng. Sci., 44 (7), 1539-1545.
  • 44. Comiti J., Sabiri N.E., Montillet A. (2000). Experimental characterization of flow regimes in various porous media - III: limit of Darcy’s or creeping flow regime for Newtonian and purely viscous non-Newtonian fluids, Chem. Eng. Sci., 55, 3057-3061.
  • 45. Crapiste G.H., Rotstein E., Whitaker S. (1986). A general closure scheme for the method of volume averaging, Chem. Eng. Sci., 41 (2), 227-235.
  • 46. Cybulski A., Eigenberger G., Stankiewicz A. (1997). Operational and Structural Nonidealities in Modeling and Design of Multitubular Catalytic Reactors, Ind. Eng. Chem. Res., 36, 3140-4148.
  • 47. Daszkowski T., Eigenberger G. (1992). A reevaluation of fluid flow, heat transfer and chemical reaction in catalyst filled tubes, Chem. Eng. Sci., 47 (9-11), 2245-2250.
  • 48. Debbas S., Rumpf H. (1966). On the randomness of beds packed with spheres or irregular shaped particles, Chem. Eng. Sci., 21, 583-607.
  • 49. Delmas H., Froment G.F. (1988). A simulation model accounting for structural radial nonuniformities in fixed bed reactors, Chem. Eng. Sci., 43 (8); 2281-2287.
  • 50. Derkx O.R., Dixon A.G. (1996). Determination of the fixed bed wall heat transfer coefficient using computational fluid dynamics, Numerical Heat Transfer, 29 (Part A), 777-794.
  • 51. Derkx O.R., Dixon A.G: (1997). Effect of the wall Nusselt number on the simulation of catalytic fixed bed reactors, Catal. Today, 35 (4), 435-442.
  • 52. Di Felice R., Gibilaro L.G. (2004). Wall effects for the pressure drop in fixed beds, Chem. Eng. Sci., 59, 3037-3040.
  • 53. Dircks C.J., Clark S.A., Hall L.D., Antalek B., Tooma J., Hewitt J.M., Kawaoka K. (2000). Magnetic Resonance Imaging of the Filtration Process, AIChE J., 46 (1), 6-14.
  • 54. Dixon A.G. (1997). Heat Transfer in Fixed Beds at Very Low (<4) Tube-to-Particle Diameter Ratio, Ind. Eng. Chem. Res., 36, 3053-3064.
  • 55. Dixon A.G., Nijemeisland M. (2001). CFD as a design tool for fixed-bed reactors, Ind. Eng. Chem. Res., 40 (23), 5246-5254.
  • 56. Dixon A.G., van Dongeren J.H. (1998). The influence of the tube and particle diameters at constant ratio on heat transfer in packed beds, Chem. Eng. Proc., 37, 23-32.
  • 57. Drahoš J., Bradka F., Punčochář M. (1992). Fractal behaviour of pressure fluctuations in a bubble column, Chem. Eng. Sci., 47 (15-16), 4069-4075.
  • 58. Drobniak S. (2002). Najnowsze tendencje w badaniach turbulencji, II warsztaty na temat ”Modelowanie przepływów wielofazowych w układach termochemicznych”, Stawiska k. Koscierzyny.
  • 59. Dudukovic M.P., Larachi F., Mills P.L. (1999). Multiphase rectors - revisited, Chem. Eng. Sci., 54, 1975-1995.
  • 60. Dullien F.A.L. (1975). New Network Permeability Model of Porous Media, AIChE J., 21 (2), 299-307.
  • 61. Eisfeld B., Schnitzlein K. (2001). The influence of confining walls on the pressure drop in packed beds, Chem. Eng. Sci., 56, 4321-4329.
  • 62. Eisfeld B., Schnitzlein K. (2002). The influence of confining walls on the pressure drop in packed beds - Author’s replay, Chem. Eng. Sci., 57, 1829.
  • 63. Elsner J.W. (1987). Turbulencja przepływów, PWN, Warszawa.
  • 64. Epstein N. (1998). Comments on transport phenomena in multi-particle systems, Chem. Eng. Sci., 53 (7), 1469-1471.
  • 65. Ergun S. (1952). Fluid Flow through Packed Columns, Chem. Eng. Prog., 48 (2), 89-94.
  • 66. Fan L.T., Neogi D., Yashima M., Nassar R. (1990). Stochastic Analysis of a Three-Phase Fluidized Bed: Fractal Approach, AIChE J., 36 (10), 1529-1535.
  • 67. Fand R.M., Kim B.Y.K., Lam A.C.C., Phan R.T. (1987). Resistance to the Flow of Fluids Through Simple and Complex Porous Media Whose Matrices Are Composed of Randomly Packed Spheres, J. Fluids Eng. Trans. ASME, 109, 268-274.
  • 68. Fand R.M., Thinakaran R. (1990). The Influence of the Wall on Flow Through Pipes Packed With Spheres, Journal of Fluids, 112, 84-88.
  • 69. Favre A., Gaviglio J., Dumas R. (1953). Recherche aeronaut., 32, 21 (cytowany przez Hinzego, 1975).
  • 70. Feder J. (1988). Fractals, Plenum Press, New York.
  • 71. Ferziger J.H. (1977). Large eddy simulations of turbulence flows, AIAA J., 15 (9).
  • 72. Fischer M., Janovic J., Durst F. (2000). Near-wall behaviour of statistical properties in turbulent flows, Int. J. Heat and Fluid Flow, 471-479.
  • 73. Flick D., Leslous A., Alvarez G. (2003). Two-dimensional simulation of turbulent flow and transfer through stacked spheres, Int. J. Heat Transfer, 46, 2459-2469.
  • 74. Fourie J.G., Du Plessis J.P . (2002). Pressure drop modelling in cellular metallic foams, Chem. Eng. Sci., 57, 2781-2789.
  • 75. Frish U. (1996). Turbulence: the legacy of A.N. Kolmogorov, Cambridge University Press.
  • 76. Fukushima E. (1999). Nuclear magnetic resonance as a tool to study flow, Annu. Rev. Fluid Mech., 31, 95-123.
  • 77. Furnas C.C. (1929). Flow of gases through beds of broken solids, Bull. U. S. Bur. Mines, No. 307.
  • 78. Georgiadis J.G., Noble D.R., Uchanski M.R., Buckius R.O. (1996). Question in Fluid Mechanics: Tortuous Micro-Flow in Large Disordered packed Beds, J. Fluids Eng. Trans. ASME, 118, 434-480.
  • 79. Germerdonk R., Wang A. (1993). Polutant adsorption during activated carbon and steam regeneration in technical columns, Chem. Eng. Proc., 32, 359-367.
  • 80. Giese M., Rottshafer K., Vortmeyer D. (1998). Measured and Modeled Superficial Flow Profiles in Packed Beds with Liquid Flow, AIChE J., 44 (2), 484-490.
  • 81. Giona M., Paglianti A., Soldati A. (1994). The application of diffusional techniques in time-series analysis to identify complex fluid dynamic regimes, Fractals, 2 (4), 503-520.
  • 82. Giona M., Paglianti A., Soldati A. (1995). Identification of multi phase flows by means of fluctuation analysis, Chaos and Fractals in Chemical Engineering, 151-162.
  • 83. Givler R.C., Altobelli S.A. (1994). A determination of the effective viscosity for the Brinkman-Forchheimer flow model, J. Fluid Mech., 258, 355-370.
  • 84. Gladden L.F. (1994). Nuclear magnetic resonance in chemical engineering: Principles and applications, Chem. Eng. Sci., 49 (20), 3339-3408.
  • 85. Gladden L.F., Hollewand M.P. (1995). Characterization of Structural Inhomogenities in Porous Media, AIChE J., 41 (4), 894-906.
  • 86. Govindarao V.M.H., Froment G.F. (1986). Voidage profiles in packed beds of spheres, Chem. Eng. Sci., 41 (3), 533-539.
  • 87. Górak A., Hoffman A. (2001). Catalytic Distillation in Structured Packings: Methyl Acetate Synthesis, AIChE J., 47 (5), 1067-1076.
  • 88. Graton L.C., Fraser H.J. (1935). Systematic Packing of Spheres with Particular Relation to Porosity and Premeability, J. Geol., 43, 785.
  • 89. Gualito J.J., Cerino F.J., Cardenas J.C., Rocha J.A. (1997). Design Method for Distillation Columns Filled with Metallic, Ceramic, or Plastic Structured Packings, Ind. Eng. Chem. Res., 36, 1747-1767.
  • 90. Gunn D.J., De Souze J.F.C. (1974). Heat transfer and axial dispersion in packed beds, Chem. Eng. Sci., 29, 1363-1371.
  • 91. Hall M.J., Hiatt J.P. (1996). Measurements of pore scale flows within and exiting ceramic foams, Experiments in Fluids, 20, 433-440.
  • 92. Handley D., Heggs P.J. (1968). Momentum and heat transfer mechanisms in regular shaped packings, Trans. Instit. Chem Eng., 46, T251-T264.
  • 93. van Hasselt B.W., Calis H.P.A., Sie S.T., van den Bleek C.M. (1999). Pressure drop characteristics of the three-levels-of-porosity reactor, Chem. Eng. Sci., 54, 3701-3708.
  • 94. van Hasselt B.W., Calis H.P.A., Sie S.T., van den Bleek C.M. (1999). Gas- and liquid-phase residence time distribution in the three-levels-of-porosity reactor, Chem. Eng., Sci., 54, 5047-5053.
  • 95. van Hasselt B.W., Lebens P.J.M., Calis H.P.A., Sie S.T., Moulijn J.A., van den Bleek C.M. (1999). A numerical comparision of alternative three-phase reactors with a conventional trickle-bed reactor. The advantages of countercurrent flow for hydrodesulfurization, Chem. Eng., Sci., 54, 4791-4799.
  • 96. van Hasselt B.W., Lindenbergh D.J., Calis H.P.A., Sie S.T., van den Bleek C.M. (1997). The three-levels-of-porosity reactor. A novel reactor for countercurrent trickle-flow processes, Chem. Eng., Sci., 52 (21-22), 3901-3907.
  • 97. Hinze J.O. (1975). Turbulence, McGraw-Hill Publishing Co., New York.
  • 98. Howes F.A., Whitaker S. (1985). The spatial averaging theorem revisited, Chem. Eng. Sci., 40 (8), 1387-1392.
  • 99. Hurst H.E. (1951 ). Long-term storage capacity of reservoirs, Trans. Am. Soc. Civil Eng., 160, 770-808.
  • 100. Ijselendoorn H.C., Calis H.P.A., van den Bleek C.M. (2001). The polylith reactor as an alternative to the monolith and the randomly packed-bed reactor. Chem. Eng. Sci., 56, 841-847.
  • 101. Iliuta I., Larachi F. and Grandjean B.P.A. (1998). Pressure Drop and Liquid Hold-up in Trickle Flow Reactors: Improved Ergun Constants and Slip Correlations for Slit Model, Ind. Eng. Chem. Res., 37, 4542-4550.
  • 102. lliuta I., Larachi F. (1999). The generalized slit model: Pressure gradient, liquid holdup & wetting efficiency in gas-liquid trickle flow, Chem. Eng. Sci., 54, 5039-5045.
  • 103. Iliuta I., Larachi F. (2002). Hydrodynamics of power-law fluids in trickle-flow reactor: Mechanistic model, experimental verification and simulations, Chem. Eng. Sci., 57, 1931-1942.
  • 104. lliuta I., Larachi F. and Grandjean B.P.A. (2002). New mechanistic film model for pressure drop and liquid holdup in trickle flow reactors, Chem. Eng. Sci., 57, 3359-3371.
  • 105. lliuta I., Petre C.F., Larachi F. (2004). Hydrodynamic continuum model for two-phase flow structured-packing-containing columns, Chem. Eng. Sci., 59, 879-888.
  • 106. Jaroszyński M., Kołodziej A., Bylica I., Smolec W. (2000). Hydrodynamika kolumn ze strukturalnym wypełnieniem reaktywnym, Inżynieria Chemiczna i Procesowa, 21, 691-705.
  • 107. Jiang Y., Khadilkar M.R., Al-Dahhan M.H., Dudukovic M.P. (2000). Single phase flow modelling in packed beds: discrete cell approach revisited, Chem. Eng. Sci., 55, 1829-1844.
  • 108. Jiang Y., Khadilkar M.R., Al-Dahhan M.H., Dudukovic M.P. (2001). CFD modeling of multiphase flow distribution in catalytic packed bed reactors: scale down issues, Catalysis Today, 66, 209-218.
  • 109. Johns M.L., Sederman A.J., Bramley A.S., Gladden L.F., Alexander P. (2000) Local Transitions in Flow Phenomena through Packed Beds Identified By MRI, AIChE J., 46 (11), 2151-2161.
  • 110. Jones D.P., Krier H. (1983). Gas Flow Resistance Measurements Through Packed Beds at High Reynolds Numbers, J. Fluids Eng. Trans. ASME, 105, 168-173.
  • 111. Kaviany M. (1995). Principles of heat transfer in porous media, Springer-Verlag, New York.
  • 112. Kenig E., Jakobsson K., Banik P., Aittamaa J., Górak A., Koskinen M., Wettmann P. (1999). An integrated tool for synthesis and design of reactive distillation, Chem. Eng. Sci., 54, 1347-1352.
  • 113. Koida N.U. (1960). On the application of the similarity principle in the filtration of liquids, Zh. Fiz. Khim., 34 (4), 789-794 (po rosyjsku).
  • 114. Kołodziej A., Jaroszyński M., Hoffmann A., Górak A. (2001). Determination of catalytic packing characteristics for reactive distillation, Catalysis Today, 69, 75-85.
  • 115. Kozeny J. (1933). Uber Bodendurchlassigkeit, Z. Pfl-Ernahr. Dung. Bodenk., 28A, 54-6.
  • 116. Kremer H., Rodenhäuser F. (1984). Momentum and mass transfer in gas flow trough the packed beds in high temperature reactors and shaft furnaces, Int. Chem. Eng., 24 (2), 189-201.
  • 117. Kuwahara F., Kameyama Y., Yamashita S., Nakayama A. (1998). Numerical Modeling of Turbulent Flow in Porous Media Using a Spatially Periodic Array, Journal of Porous Media, 1 (1), 47-55.
  • 118. Kvamsdal H.M., Svendsen H.F., Hertzberg T., Olsvik O. (1999). Dynamic simulation and optimization of a catalytic steam reformer, Chem. Eng. Sci., 54 (13-14), 2697-2706.
  • 119. Lakota A., Levec J., Carbonell R.G. (2002). Hydrodynamics of Trickling Flow in Packed Beds: Relative Permeability Concept, AIChE J., 48 (4), 731-738.
  • 120. Larachi F., Petre C.F., Iliuta I., Gradjean B. (2003). Tailoring the pressure drop of structured packings through CFD simulations, Chem. Eng. Proc, 42, 535-541.
  • 121. Latifi M.A., Naderifar A., Midoux N. (1997). Velocity gradient at the wall of a packed bed reactor with single phase liquid flow: measurements and modeling, Chem. Eng. Proc., 36, 251-254.
  • 122. Launder B.E., Spalding D.B. (1972). Lectures in Mathematical Models of turbulence, Academic Press, London.
  • 123. Legawiec B., Ziółkowski D. (1994). Structure, voidage and effective thermal conductivity of solids within near-wall region of beds packed with spherical pellets in tubes, Chem. Eng. Sci., 49 (15), 2513-2520.
  • 124. Lehner F.K. (1979). A derivation of the Field Equations for Slow Viscous Flow through a Porous Medium, Ind. Eng. Chem. Fund., 18 (1), 41-45.
  • 125. Lerou J.J., Froment G.F. (1977). Velocity, temperature and conversion profiles in fixed bed catalytic reactors, Chem. Eng. Sci., 32, 853-861.
  • 126. Lesage F., Latifi M.A., Midoux N. (2000). Boundary element method in modeling of momentum transport and liquid-to-wall mass transfer in a packed-bed reactor, Chem. Eng. Sci., 55, 455-460.
  • 127. Leva M. (1947). Pressure drop through packed tubes - Part 1. A general correlation, Chem. Eng. Progress, 43 (10), 549-554.
  • 128. Leva M. (1947). Pressure drop through packed tubes - Part 2. Effect of surface roughness, Chem. Eng. Progress, 43 (11), 633-638.
  • 129. LeVan M.D., Vermeulen T. (1984). Channeling and bed-diameter effects in fixed-bed adsorber performance, AIChE Symposium Series, 80 (233), 34-43.
  • 130. Levec J., Carbonell R.G. (1985). Longitudinal and Lateral Thermal Dispersion in Packed Beds, AIChE J., 31 (4), 581-602.
  • 131. Li C.H., Finlayson B.A. (1977). Heat transfer in packed beds - a revaluation, Chem. Eng. Sci., 32, 1055-1066.
  • 132. Liu S. (2001). A continuum model for gas-liquid flow in packed towers, Chem. Eng. Sci., 56, 5945-5953.
  • 133. Liu S., Masliyah J.H. (1996). Single fluid flow in porous media, Chem. Eng. Comm., 148-150, 653-732.
  • 134. Logtenberg S.A., Dixon A.G. (1998). Computational fluid dynamics studies of fixed bed heat. transfer, Chem. Eng. Proc., 37 (1 ), 7-21.
  • 135. Logtenberg S.A., Dixon A.G. (1998). Computational fluid dynamics studies of the effects of temperature-dependent physical properties on fixed-bed heat transfer, Ind. Eng. Chem. Res., 37 (3), 739-747.
  • 136. Logtenberg S.A., Nijemeisland M., Dixon A.G. (1999). Computational fluid dynamics simulations of fluid flow and heat transfer at the wall-particle contact points in fixed-bed reactor, Chem. Eng. Sci., 54 (13-14), 2433-2439.
  • 137. Lundgren T.S. (1972). J. Fluid Mech., 51, 273.
  • 138. Macdonad I.F., El-Sayed M.S., Mow K., Dullien F.L. (1979). Flow through Porous Media - the Ergun Equation Revisited, Ind. Eng. Chem. Fund., 18 (3), 199-208.
  • 139. Maier R.S., Bernard R.S., Grunau D.W. (1996). Boundary conditions for the lattice Boltzmann method, Phys. Fluids, 8 (7), 1788-1801.
  • 140. Maier R.S., Kroll D.M., Kutsovsky Y.E., Davis H.T., Bernard R.S. (1998). Simulation flow through bead packs using the lattice Boltzmann method, Phys. Fluids, 10 (1), 60-74.
  • 141. Mandelbrot B.B., van Ness J.W. (1968). Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10, 422-437.
  • 142. Marcandelli C., Lamine A.S., Bernard J.R., Wild G. (2000). Liquid Distribution in Trickle-Bed Reactor, Oil & Gas Science and Technology - Rev. IFP, 55 (4), 407-415.
  • 143. Martin J.J., McCabe W.L., Monrad C.C. (1951). Pressure drop through stacked spheres, Chem. Eng. Progress, 47, 91-94.
  • 144. Martins A.A., Dias M.M., Lopes J.C.B. (2002). Network Modelling of Flow in a Packed Bed, Proceedings of 15th International Congress of Chemical and Process Engineering CHISA 2002, CD-ROM.
  • 145. Martys N., Bentz D.P., Garboczi E.J. (1994). Computer simulation study of the effective viscosity in Brinkman’s equation, Phys. Fluids, 6 (4), 1434-1439.
  • 146. Masuoka T., Takatsu Y. (1996). Turbulence model for flow through porous media, Int. J. Heat Mass Transfer, 39 (13), 2803-2809.
  • 147. Mauret E., Renaud M. (1997). Transport phenomena in multi-particle systems - I. Limits of applicability of capillary model in high voidage beds - application to fixed beds of fibers and fluidized beds of spheres, Chem. Eng. Sci., 52 (11), 1807-1817.
  • 148. Mauret E., Renaud M. (1997). Transport phenomena in multi-particle systems -II. Proposed new model based on flow around submerged objects for sphere and fiber beds - transition between the capillary and particulate representations, Chem. Eng. Sci., 52 (11), 1819-1834.
  • 149. Maurizi A., Lorenzani S. (2001). Lagrangian Time-Skales in Homogeneous Non-Gaussian Turbulence, Flow, Turbulence and Combustion, 67, 205-206.
  • 150. McGreavy C., Foumeny E.A., Javed K.H. (1986). Characterization of transport properties for fixed beds in therms of local bed structure and flow distribution, Chem. Eng. Sci., 41, 787.
  • 151. van der Merwe D.F., Gauvin W.H. (1971). Pressure Drag Measurements for Turbulent Air Flow Through a Packed Bed, AIChE J., 17 (2), 402-419.
  • 152. van der Merwe D.F., Gauvin W.H. (1971). Velocity and Turbulence Measurements of Air Flow Through A Packed Bed, AJChE J., 17 (3), 519-528.
  • 153. Mickley H.S., Smith K.A., Korchak E.I. (1964). Fluid flow in packed beds, Chem. Eng. Sci., 20, 237-246.
  • 154. Mohamadinejad H., Knox J.C., Smith J.E. (2000). Experimental and Numerical Investigation of Adsorption/Desorption in Packed Sorption Beds under Ideal and Nonideal Flows, Separ. Sci. Technol., 35 (1), 1-22.
  • 155. Mohamed Ali A., Jansens P.J., Olujic Z. (2003). Experimental characterization and computational fluid dynamics simulation of gas distribution performance of liquid redistributors and collectors in packed beds, Trans IChemE, 81 (A), 108-115.
  • 156. Moise A., Tudose R.Z. (1998). Air isothermal flow through packed beds, Experimental Thermal and Fluid Science, 18, 134-141.
  • 157. Montillet A., Le Coq L. (2001 ). Characteristics of fixed bedts packed with anisotropic particles - Use of image analysis, Powder Technology, 121, 138-148.
  • 158. Müller G.E. (1997). Angular Porosity Distributions in Fixed Packed Beds of Low Diameter Aspect Ratio, Canadian J. Chem. Eng., 75, 677-683.
  • 159. Müller G.E. (1999). Radial Void Fraction Correlation for Annular Packed Beds, AIChE J., 45 (11), 2458-2460.
  • 160. Münsterman N. (1984). Adsorption von CO2 aus Reingas und aus Luft am Molekularsieb-Einzelkorn und im Festbett, Ph. D. Thesis, Technical University of Munich.
  • 161. Nakagawa S., Na Y., Hanratty T.J. (2003). Influence of wavy boundary on turbulence, I. Highly rough surface, Experiments in Fluids, 35 (5) 422-436.
  • 162. Nakagawa S., Na Y., Hanratty T.J. (2003). Influence of wavy boundary on turbulence, II. Intermediate roughened and hydraulically smooth surfaces, Experiments in Fluids, 35 (5) 437-447.
  • 163. Nakayama A., Kuwahara F. (1999). A macroscopic turbulence model for flow in a porous media, J. Fluids Eng., Trans. ASME, 121 (2), 427-433.
  • 164. Nandakumar K., Shu Y., Chuang K.T. (1999). Predicting Geometrical Properties of Random Packed Beds from Computer Simulation, AIChE J., 45 (11), 2286-2297.
  • 165. Neale G., Nader W. (1974). Practical Significance of Brinkman’s Extension of Darcy’s Law: Coupled Parallel Flows within a Channel and a Bounding Porous Medium, Can. J. Chem. Eng., 52, 475-478.
  • 166. Nemec D., Bercic G., Levec J. (2001). The hydrodynamics of tricling flow in packed beds operating at high pressures. The relative permeability concept, Chem. Eng. Sci., 56, 5955-5962.
  • 167. Newell R., Standish N. (1973). Velocity Distribution in Rectangular Packed Beds and Non-Ferrous Blast Furnaces, Metallurgical Transactions, 4, 1851-1857.
  • 168. Nield D.A. (1983). Alternative Model for Wall Effect in Laminar Flow of a Fluid through a Packed Column, AIChE J., 29 (4), 688-689.
  • 169. Nield D.A. (1991). The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface, Int. J. Heat and Fluid Flow, 12 (3), 269-272.
  • 170. Nield D.A., Vafai K., Kim S.J. (1996). Closure statements on the Brinkman-Forchheimer-extended Darcy model, Int. J. Heat and Fluid Flow, 17, 34-35.
  • 171. Nijemeisland M., Dixon A.G. (2001). Comparison of CFD simulations to experiment for convective heat transfer in a gas-solid fixed bed, Chem. Eng. J., 231-246.
  • 172. Nijemeisland M., Dixon A.G. (2004). CFD Study of Fluid Flow and Wall Heat Transfer in a Fixed Bed of Spheres, AICHE J., 50 (5), 906-921.
  • 173. Niven R.K. (2002). Physical insight into the Ergun and Wen & Yu equations for fluid flow in packed and fluidized beds, Chem. Eng. Sci., 57, 527-534.
  • 174. Nourgaliev R.R., Dinh T.N., Theofanous T.G., et al. (2003). The lattice Boltzmann equation method: theoretical interpretation, numerics and implications, Int. J. Multiphas. Flow, 29 (1), 117-169.
  • 175. Ochoa-Tapia J.A., Whitaker S. (1995). Momentum transfer at the boundary between a porous medium and a homogeneous fluid - I. Theoretical development, lnt J. Heat Mass Transfer, 38 (14), 2635-2646.
  • 176. Ochoa-Tapia J.A., Whitaker S. (1995). Momentum transfer at the boundary between a porous medium and a homogeneous fluid - II. Comparison with experiment, Int. J. Heat Mass Transfer, 38 (14), 2647-2655.
  • 177. Olujic Z. (1999). Effect of column diameter on pressure drop of a corrugated sheet structured packing, Trans IChemE, 77 (Part A), 505-510.
  • 178. Olujic Z., Mohamed Ali A., Jansens P.J. (2004). Efflct of. the initial gas maldistribution on the pressure drop of structured packings, Chem. Eng. Proc., 43, 465-476.
  • 179. Pandit A.B., Joshi J.B. (1998). Pressure drop in fixed, expanded and fluidized beds, packed columns and static mixers - a unified approach, Rev. Cheml Eng., 14 (4-5), 321-371.
  • 180. Papageorgiou J.N., Froment G.F. (1995). Simulation models accounting for radia voidage profiles in fixed-bed reactors, Chem. Eng. Sci., 50 (19), 3043.
  • 181. Paraskos J.A., Frayer J.A., Shah Y.T. (1975). Effect of Holdup in Complete Catalyst Wetting and Backmixing During Hydroprocessing in Trickle-Bed Reactors, Ind. Eng. Chem. Proc. Des. Dev., 14, 315.
  • 182. Parker R., Rajagopalan S., Antonia R.A. (2003). Control of an axisymmetric jet using a passive ring, Exp.Thermal Fluid Sci, 27, 545-552.
  • 183. Payatakes A.C., Neira M.A. (1977). Model of the Constricted Unit Cell Type for Isotropic Granular Porous Media, AIChE J., 23 (6), 922.
  • 184. Payatakes A.C., Tien C., Turian R.M. (1973). A New Model for Granular Porous Media: Part I. Model Formulation, AIChE J., 19 (1), 58-66.
  • 185. Payatakes A.C., Tien C., Turian R.M. (1973). A New Model for Granular Porous Media: Part II. Numerical Solution of Steady State Incompressible Newtonian Flow Through Periodically Constricted Tubes, AIChE J., 19 (1), 67-76.
  • 186. Pedras M.H.J., de Lemos M.J.S. (2000). On the definition of turbulent kinetic energy for flow in porous media, Int. Comm. Heat Mass Transfer, 27 (2), 211-220.
  • 187. Pedras M.H.J., de Lemos M.J.S. (2001). Macroscopic turbulence modeling for incompressible flow through undefonnable porous media, Int. J. Heat Mass Transfer, 44, 1081-1093.
  • 188. Petre C.F., Larachi F., Iliuta I., Grandjean B.P.A. (2003). Pressure drop through structured packings: Breakdown into the contributing mechanisms by CFD modeling, Chem. Eng. Sci., 58 (1), 163-177.
  • 189. Pietgen H.O., Saupe D. (1988). The Science of Fractal Images, Springer-Verlag, New York.
  • 190. Ping N., Gu J.J., Bart H.J. (1997). Numerical simulation of the effect of maldistribution in a fixed bed adsorber, Chinese J. Chem. Eng., 5 (4), 304-315.
  • 191.Pinna D., Tronconi E., Tagliabue L. (2001). High Interaction Regime Lockhart-Martinelli Model for Pressure Drop in Trickle-Bed Reactors, AIChE J., 47, 19-30.
  • 192. Pollock G.S., Eldridge R.B. (2000). Neural Network Modeling of Structured Packing Height Equivalent to a Theoretical Plate, Ind. Eng. Chem. Res., 39, 1520-1525.
  • 193. Pope S.B. (2000). Turbulent flows, Cambridge University Press.
  • 194. Prakash M., Turan O.F., Li Y., Mahoney J., Thorpe G.R. (2001). Impinging round jet studies in a cylindrical enclosure with and without a porous layer: Part I - Flow visualizations and simulations, Chem. Eng. Sci., 56, 3855-3878.
  • 195. Prakash M., Turan O.F., Li Y., Mahoney J., Thorpe G.R. (2001). Impinging round jet studies in a cylindrical enclosure with and without a porous layer: Part II - LDV measurements and simulations, Chem. Eng. Sci., 56, 3879-3892.
  • 196. Price J. (1968). The Distribution of Fluid Velocities for Randomly Packed Beds of Spheres, Mech. Chem. Eng. Trans., May, 7-14.
  • 197. Punčochář M., Drahoš J. (1993). The tortuosity concept in fixed and fluidized bed, Chem. Eng. Sci., 48 (11), 2173-2175.
  • 198. Punčochář M., Drahoš J. (2000). Limits of applicability of capillary model for pressure drop correlation, Chem. Eng. Sci., 55, 3951-3954.
  • 199. Punčochář M., Drahoš J., Čermák J. (1990). The limits of applicability of pressure drop correlations, Chem. Eng. Sci., 45 (9), 2994-2998.
  • 200. Quintard M., Whitaker S. (1993). Transport in ordered and disordered porous media: Volume. Averaged equations, closure problems, and comparison with experiment, Chem. Eng. Sci., 48 (14), 2537-2564.
  • 201. Quintard M., Whitaker S. (1994). Transport in ordered and disordered porous media I: The Cellular Average and the Use of Weighting Functions. Transport in Porous Media, 14, 163.
  • 202. Quintard M., Whitaker S. (1994). Transport in ordered and disordered porous media II: Generalized Volume Averaging, Transport in Porous Media, 14, 179.
  • 203. Quintard M., Whitaker S. (1994). Transport in ordered and disordered porous media III: Closure and Comparison Between Theory and Experiment, Transport in Porous Media, 15, 31.
  • 204. Ranade V.V. (2002). Computational flow modeling for chemical reactor engineering. Academic Press, London.
  • 205. Robbins L.A. (1991). Improve Pressure-Drop Prediction With a New Correlation, Chem. Eng. Progress, 87 (5), 87-91.
  • 206. Rocamora Jr. F.D., de Lemos M.J.S. (2000). Analysis of convective heat transfer for turbulent flow in saturated porous media, Int. Comm. Heat Mass Transfer, 27 (6), 825-834.
  • 207. Rocha J.A., Bravo J.L., Fair J.R. (1993). Distillation Columns Containing Structured Packings: A Comprehensive Model for Their Performance. 1. Hydraulic Models, Ind. Eng. Chem. Res., 32, 641-651.
  • 208. Rojas S., Koplik J. (1998). Nonlinear flow in porous media, Physical Review E, 58(4), 4776-4782.
  • 209. Rowe P.N., Henwood G.A. (1961). Drag forces in hydraulic model of a fluidized bed - Part I, Trans. Instn Chem. Engrs, 39, 43-54.
  • 210. Rudisill E.N., LeVan M.D. (1991). Constant Pattern Behaviour for Adsorption Processes with Non Plug Flow, Ind. Eng. Chem. Res., 30 (5), 1054-1060.
  • 211. Satterfield C. (1975). Trickle-Bed Reactors, AJChE J., 1, 209.
  • 212. Schnitzlein K. (1993). Prediction of velocity profiles in packed beds, Chem. Eng. Sci., 48 (4), 811-815.
  • 213. Schnitzlein K. (2001). Modelling radial dispersion in terms of the local structure of packed beds, Chem. Eng. Sci., 56, 579-585.
  • 214. Sederman A.J., Johns M.L., Alexander P., Gladden L.F. (1998). Structure-flow correlations in packed beds, Chem. Eng. Sci., 53 (12), 2117-2128.
  • 215. Seguin D., Montillet A., Comiti J., Huet F. (1998). Experimental characterization of flow regimes in various porous media - I: Limit of laminar flow regime, Chem. Eng. Sci., 53 (21), 3751-3761.
  • 216. Seguin D., Montillet A., Comiti J., Huet F. (1998). Experimental characterization of flow regimes in various porous media - II: Transition to turbulent regime, Chem. Eng. Sci., 53 (22), 3897-3909.
  • 217. Seymour J.D., Callaghan P.T. (1997). Generalized Approach to NMR Analysis of Flow and Dispersion in Porous Media, AIChE J., 43 (8), 2096-2110.
  • 218. Shah K.B., Ferziger J.H. (1997). A fluid mechanicians view of wind engineering: Large eddy simulation of flow past a cubic obstacle, J. Wind. Eng. Ind. Aerod., 67 (8), 211-224.
  • 219. Sieber M. (1987). Experiments on the attractor-dimension for turbulent pipe flow, Phys. Lett. A, 122 (9), 467-469.
  • 220. Skjetne E., Auriault J.L. (1999). New insights on steady, non-linear flow in porous media. Eur. J. Mech. B/Fluids, 18 (1), 131-145.
  • 221. Slattery J.C. (1967). Flow of Viscoelastic Fluids Through Porous Media, AIChE J., 13 (6), 1066-1071.
  • 222. van der Sman R.G.M. (2002). Prediction of airflow through a vented box by the Darcy-Forchheimer equation, J. Food Eng., 55 (1), 49-57.
  • 223. Soldati A., Paglianti A., Giona M. (1996). ldentification of two phase regimes via diffusional analysis of experimental time series, Experiments in Fluids, 21, 151-160.
  • 224. Song M., Yin F.H., Chuang K.T., Nandakumar K. (1998). A stochastic Model for the Simulation of the Natural Flow in Random Packed Columns, Canadian J. Chem. Eng., 76, 183-189.
  • 225. Song M., Yin F.H., Nandakumar K., Chuang K.T. (1998). A Three-Dimensional Model for Simulating the Maldistribution of Liquid Flow in Random packed Beds, Canadian J. Chem. Eng., 76, 161-166.
  • 226. Staněk V. (1995). Fixed bed operations: flow distribution and efficiency, Ellis Horwood Ltd.
  • 227. Staněk V., Szekely J. (1972). The Effect of Non-Uniform Porosity in Causing Flow Maldistributions in Isothermal Packed Beds, Canadian J. Chem. Eng., 50, 22-30.
  • 228. Staněk V., Szekely J. (1973). Flow Maldistribution in Two Dimensional Packed Beds, Part II: The Behavior of Non-Isothermal Systems, Canadian J. Chem. Eng., 51, 9-14.
  • 229. Staněk V., Szekely J. (1974). Three-Dimensional Flow of Fluids Through Nonuniform Packed Beds, AIChE J., 20 (5), 974-980.
  • 230. Stephan E.A., Chase G.G. (2000). Development of Volume-Average Theory for Deep-Bed Filtration, AIChE J., 46 (10), 1918-1926.
  • 231. Subagyo, Standish N., Brooks G.A. (1998). A new model of velocity distribution of a single-phase fluid flowing in packed beds, Chem. Eng. Sci., 53 (7), 1375-1385.
  • 232. Szekely J., Poveromo J.J. (1975). Flow Maldistribution in Packed Beds: A Comparision of Measurements with Predictions, AIChE J., 21 (4), 769-775.
  • 233. Taylor R., Krishna R. (2000). Modelling reactive distillation, Chem. Eng. Sci., 55, 5183-5229.
  • 234. Teng H., Zhao T.S. (2000). An extension of Darcy’s law to non-Stokes flow in porous media, Chem. Eng. Sci., 55, 2727-2755.
  • 235. Tennekes H., Lumley J.L. (1972). A first course in turbulence, The MIT Press, England.
  • 236. Thoméo J.C., Freire J.T. (2000). Heat transfer in fixed bed: a model non-linearity approach, Chem. Eng. Sci., 55 (12), 2329-2338.
  • 237. Tien C.L., Hunt M.L. (1987). Boundary-Layer Flow and Heat Transfer in Porous Beds, Chem. Eng. Process., 21, 53-63.
  • 238. Tierney M., Nasr A., Quarini G. (1998). The use of proprietary computational fluid dynamics codes for flows in annular packed beds, Sep. Purif. Technol., 13, 97-107.
  • 239. Tobiś J., Vortmeyer D. (1988). The near-wall channeling effect on isothermal constant-pattern adsorption, Chem. Eng. Sci., 43 (6), 1363-1369.
  • 240. Tobiś J., Ziółkowski D. (1988). Modelling of heat transfer at the wall of a packed-bed apparatus, Chem. Eng. Sci., 43 (11), 3031-3036.
  • 241. Tobiś J., Vortmeyer D. (1991). Scale-up Effects due to Near-Wall Channelling in Isothermal Adsorption Columns: on the Limitations in the Use of Plug Flow Models, Chem. Eng. Process., 29, 147-153.
  • 242. Tobiś J. (1994). Metody oszacowania efektów kanałowania w rurowych aparatach z wypełnieniem ziarnistym, Przemysł Chemiczny, 73 (7), 257-259.
  • 243. Tobiś J. (1996). Oddziaływanie geometrii układu na pole prędkości gazu w złożu stałym, Inż. Aparat. Chem, 3, 11-14.
  • 244. Tobiś J. (1997). Badania turbulencji gazu przepływającego przez stałe złoże, Inż. Chem. Proc, 18 (3), 455-468.
  • 245. Tobiś J. (2000). Influence of bed geometry on its frictional resistance under turbulent flow conditions, Chem. Eng. Sci., 55, 5359-5366.
  • 246. Tobiś J. (2000). Numeryczna symulacja turbulentnego przepływu gazu przez wypełnienia o zadanej geometrii, Inż. Chem. Proc., 21 (3), 431-442.
  • 247. Tobiś J. (2001). Turbulent resistance of complex bed structures, Chem. Eng. Comm., 184, 71-88.
  • 248. Tobiś J. (2002). Modeling of the pressure drop in the packing of complex geometry, Ind. Eng. Chem. Res., 41 (10), 2552-2559.
  • 249. Tobiś J. (2002). Turbulent flow behavior within complex structures, Proceedings of 15th International Congress of Chemical and Process Engineering CHISA 2002, CD-ROM.
  • 250. Tobiś J. (2003). Turbulent flow modelling within the packing of complex geometry, Fourth European Congress of Chemical Engineering, Proceedings, CD-ROM, P5.5-021.
  • 251. Tobiś J. (2003). Modelowanie przepływów w wypełnieniach niejednorodnych, Inż. Aparat. Chem., 5s, 212-213.
  • 252. Tobiś J. (2004). Numeryczna analiza hydrodynamicznego oporu wypełnień o złożonej strukturze, Inż. Chem. Proc., 22, 450-456.
  • 253. Tsotsas E., Schlünder E.U. (1988). Some remarks on channeling and on radial dispersion in packed beds, Chem. Eng. Sci., 43, 1200-1203.
  • 254. Tsotsas E., Schlünder E.U. (1990). Heat transfer in packed beds with fluid flow, Chem. Eng. Sci., 45 (4), 819-837.
  • 255. Tsotsas E. (2002). The influence of confining walls on the pressure drop in packed beds, Chem. Eng. Sci., 57, 1827.
  • 256. Vafai K., Kim S.J. (1995). On the limitations of the Brinkman-Forchheimer-extended Darcy equation, Int. J. Heat and Fluid Flow, 16 (1), 11-15.
  • 257. Vafai K., Thiyagaraja R. (1987). Analysis of flow and heat transfer at the interface region of a porous medium, Int. J. Heat Mass Trans., 30 (7), 1391-1405.
  • 258. Veverka V. (1981). Theorem for the local volume average of a gradient revised, Chem. Eng. Sci., 36, 833-838.
  • 259. Volkov S.A., Reznikov V.I., Khalilov K.F., Zelvensky V., Yu, Sakodynsky K.I. (1986). Nonuniformity of packed beds and its influence on longitudinal dispersion, Chem. Eng. Sci., 41 (2), 389-397.
  • 260. Vortmeyer D., Haidegger E. (1991). Discrimination of three approaches to evaluate heat fluxes for wallcooled fixed bed chemical reactors, Chem. Eng. Sci., 46, 2651-2660.
  • 261. Vortmeyer D., Schuster J. (1983). Evaluation of steady flow profiles in rectangular and circular packed beds by a variational method, Chem. Eng. Sci., 38 (10), 1691-1699.
  • 262. van Wageningen W.F.C., Kandhai D., Mudde R.F., van den Akker H.E.A. (2004). Dynamic Flow in a Kenics Static Mixer: An Assessment of Various CFD Methods, AIChE J., 50 (8), 1684-1696.
  • 263. Wang L. (2000). Flows through Porous Media: A Theoretical Development at Macroscale, Trans. Porous Media, 39, 1-24.
  • 264. Wang L.J., Sun D.W. (2003). Recent developments in numerical modelling of heating and cooling processes in the food industry - a review, Trend Food Sci. Tech., 14, 408-423.
  • 265. Wang X., Thauvin F., Mohanty K.K. (1999). Non-Darcy flow through anisotropic porous media, Chem. Eng. Sci., 54 (12), 1859-1869.
  • 266. Wegner T.H., Karabelas A.J., Hanratty T.J. (1971). Visual studies of flow in a regular array of spheres, Chem. Eng. Sci., 26, 59-63.
  • 267. Wentz C.A., Thodos G. (1963). Pressure drops in the Flow of Gases Through Packed and Distended Beds of Spherical Particles, AIChE J., 9, 81-84.
  • 268. Whitaker S. (1967). Diffusion and dispersion in porous media, AIChE J., 13, 420-427.
  • 269. Whitaker S. (1986). Flow in Porous Media I: A Theoretical Derivation of Darcy’s Low, Transport in Porous Media, 1, 3-25.
  • 270. Wilcox D.C. (1993). Turbulence Modeling for CFD, DCW Industries, Inc.
  • 271. Winterberg M., Tsotsas E. (2000). Correlations for effective heat transport coefficients in beds packed with cylindrical particles, Chem. Eng. Sci., 55, 5937-5943.
  • 272. Winterberg M., Tsotsas E., Krischke A., Vortmeyer D. (2000). A simple and coherent set of coefficients for modeling of heat and mass transport with and without chemical reaction in tubes filled with spheres, Chem. Eng. Sci., 55, 967-979.
  • 273. Wojciechowski J. (1989). Turbulence measurement in a free jet by means of digital technique, Turbulence, 1, 141-153.
  • 274. Wood B.D., Quintard M., Whitaker S. (2000). Jump conditions at non-uniform boundaries: the catalytic surface, Chem. Eng. Sci., 55, 5231-5245.
  • 275. Xia B., Sun D.W. (2002). Aplication of computational fluid dynamics (CFD) in the food industry, a review, Comput. Electron Agr., 34, 5-24.
  • 276. Yagi S., Kunii D. (1960). Studies on Heat Transfer Near Wall Surface in Packed Beds, AIChE J., 6 (1), 97-104.
  • 277. Yakhot V., Orszag S.A. (1986). Renormalization Group Analysis of Turbulence: I. Basic Theory, J. Scientific Comuting, 1, 1-51.
  • 278. Yevseyev A.R., Nakoryakov V.E., Romanov N.N. (1991). Experimental investigation of a turbulent filtrational flow, Int. J. Multiphase Flow, 17 (1), 103-118.
  • 279. Yoshizawa A. (1979). A Proper Tensorial Form of D’Arcy - Ergun Equation, Trans. ISIJ, 19, 559-561.
  • 280. Yu A.B., Zou R.P., Standish N. (1998). Modifying the Linear Packing Model for Predicting the Porosity of Nonspherical Particle Mixtures, Ind. Eng. Chem. Res., 35, 3730-3741.
  • 281. Zanotti F., Carbonell R.G. (1984). Development of transport equations for multiphase systems - I: General development for two phase systems, Chem. Eng. Sci., 39 (2), 263-278.
  • 282. Zanotti F., Carbonell R.G. (1984). Development of transport equations for multiphase systems - II: Application to one-dimensional axi-symmetric flow of two phases, Chem. Eng. Sci., 39 (2), 279-297.
  • 283. Zick A.A., Homsy G.M. (1982). Stokes flow through periodic arrays of spheres, J. Fluid Mech., 115, 13-26.
  • 284. Zijl W., Trykozko A. (2000). Flow systems analysis and homogenization for aquifer protection, Acta Geologica Hungarica, 43 (2), 203-222.
  • 285. Ziółkowska I., Ziółkowski D. (1988). Fluid Flow inside Packed Beds, Chem. Eng. Process., 23, 137-164.
  • 286. Ziółkowska I., Ziółkowski D. (2001). Experimental analysis of isothermal gas flow field in tubes packed with spheres, Chem. Eng. Process., 40, 221-233.
  • 287. Ziółkowska I., Krajewska M., Ziółkowski D. (1992). Relation between the bed structure and the apparent radial gas velocity profile at the bed outlet in tubular apparatus, Chem. Eng. Sci., 47 (15-16), 3999-4006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0008-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.